Spectroscopic Characterization, Molecular Modeling and DFT/TD-DFT/PCM Calculations of Novel Hydrogen-Bonded Charge Transfer Complex between Chloranilic Acid and 2-Amino-4,6-Dimethylpyridine
A charge transfer hydrogen bonded complex between the electron donor
(proton acceptor) 2-amino-4,6-dimethylpyridine with the electron acceptor
(proton donor) chloranilic acid has been synthesized and studied experimentally and theoretically. The
stability constant recorded high values indicating the high stability of the
formed complex. In chloroform, ethanol, methanol and acetonitrile were found
the stoichiometric ratio 1:1. The solid complex was prepared and characterized
by different spectroscopy techniques. FTIR, 1H and 13C
NMR studies supported the presence of proton and charge transfers in the formed
complex. Complemented with experimental results, molecular modelling using the
density functional theory (DFT) calculations was carried out in the gas,
chloroform and methanol phases where the existence of charge and hydrogen
transfers. Finally, a good consistency between experimental and theoretical
calculations was found confirming that the applied basis set is the suitable
one for the system under investigation.
References
[1]
Mulliken, Robert, S. and Willis, B.P. (1969) Molecular Compounds and Their Spectra. XXI. Some General Considerations. Journal of the American Chemical Society, 91, 3409-3413. https://pubs.acs.org/doi/abs/10.1021/ja01123a067
[2]
Basavaiah, K. and Charan, V.S. (2002) Spectrophotometric Determination of Astemizole and Loratadine Based on Charge-Transfer Complex Formation with Chloranilic Acid. ScienceAsia, 28, 359-364. http://www.scienceasia.org/2002.28.n4/v28_359_364.pdf
[3]
Habeeb, M.M. and Awad, M.K. (1995) Nuclear Quadrupole Resonance and Molecular Orbital Studies of Charge Distribution in H-Bonded Complexes of 2-Chloro-4-Nitrobenzoic Acid. Magnetic Resonance in Chemistry, 33, 476-480. https://onlinelibrary.wiley.com/doi/abs/10.1002/mrc.1260330612
[4]
Habeeb, M.M. (1997) Spectroscopic Studies of Proton Transfer Equilibria in Hydrogen Bonded Complexes. Applied Spectroscopy Reviews, 32, 103-140. https://www.tandfonline.com/doi/abs/10.1080/05704929508001134
[5]
Amilan, D.J., Atindra, D.S., Shukla, D., Ramakrishna, G., Dipak, K., Palit, K., Hirendra, N.G. and Amitava, D. (2007) Physicochemical and Photophysical Studies on Porphyrin-Based Donor-Acceptor Systems: Effect of Redox Potentials on Ultrafast Electron-Transfer Dynamics. The Journal of Physical Chemistry B, 111, 9078-9087. https://pubs.acs.org/doi/abs/10.1021/jp0705830
[6]
Khan, I.M. Afaq, A. and Aatif, M. (2011) Synthesis, Single-Crystal Characterization, Antimicrobial Activity and Remarkable in Vitro DNA Interaction of Hydrogen-Bonded Proton-Transfer Complex of 1, 10-Phenanthroline with 2, 4, 6-Trinitrophenol. Journal of Photochemistry and Photobiology B: Biology, 105, 6-13. http://europepmc.org/abstract/med/21767962
[7]
Khan, I.M., Afaq, A. and Kumar, S. (2013) Synthesis, Spectroscopic Characterization and Structural Investigations of a New Charge Transfer Complex of 2, 6-Diaminopyridine with 3, 5-Dinitrobenzoic Acid: DNA Binding and Antimicrobial Studies. Journal of Molecular Structure, 1035, 38-45. https://www.researchgate.net/publication/256770874 https://doi.org/10.1016/j.molstruc.2012.09.016
[8]
Khan, I.M., Afaq, A. and Ullah, M.F. (2013) Synthesis, Spectroscopic Investigations, Antimicrobial and DNA Binding Studies of a New Charge Transfer Complex of O-Phenylenediamine with 3, 5-Dinitrosalicylic Acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 102, 82-87. https://www.sciencedirect.com/science/article/abs/pii/S1386142512010220
[9]
Fourmy, D., Recht, M.I., Scott, C. and Blanchard, J.D. (1996) Structure of the A site of Escherichia Coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic. Science, 274, 1367-1371. https://www.ncbi.nlm.nih.gov/pubmed/8910275
[10]
Andrade, S.M., Silvia, M.B. and Robert, P. (2000) Structural Changes in W/O Triton X-100/Cyclohexane-Hexanol/Water Microemulsions Probed by a Fluorescent Drug Piroxicam. Journal of Colloid and Interface Science, 226, 260-268. https://www.sciencedirect.com/science/article/abs/pii/S0021979700968218 https://doi.org/10.1006/jcis.2000.6821
[11]
Bella, S.D., Fragala, I.L., Ratner, M.A. and Marks, T.J. (1993) Electron Donor-Acceptor Complexes as Potential High-Efficiency Second-Order Nonlinear Optical Materials. A Computational Investigation. Journal of the American Chemical Society, 115, 682-686. https://scholar.google.com/scholar?cluster=16824206174605515467&hl=en&oi=scholar
[12]
Goldberg, G.S., Virginijus, V. and Peter, R.B. (2004) Selective Permeability of Gap Junction Channels. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1662, 96-101. https://www.ncbi.nlm.nih.gov/pubmed/15033581 https://doi.org/10.1016/j.bbamem.2003.11.022
[13]
Byshevsky, A.S. and Tersenov, O.A. (1994) Biochemistry for the Doctor. https://www.amazon.com/Byshevskij-Tersenov-Biohimiya-Byshevsky-Biochemistry/dp/B071KWJZZG
[14]
Millero, F.J., Zhang, J.Z., Lee, K., Campbell, D.M., Campbell, D. and Zhang, J. (1993) Titration Alkalinity of Seawater. Marine Chemistry, 44, 153-165. https://www.sciencedirect.com/science/article/pii/0304420393902008
[15]
Ruiz-Hitzky, E. (2001) Molecular Access to Intracrystalline Tunnels of Sepiolite Basis of a Presentation Given at Materials Discussion No. 3, 24-26 September 2000, University of Cambridge, UK. Journal of Materials Chemistry, 11, 86-91. https://pubs.rsc.org/en/content/articlelanding/2001/jm/b003197f#!divAbstract
[16]
Jie, Z. and Xiwen, H. (1999) Study of the Nature of Recognition in Molecularly Imprinted Polymer Selective for 2-Aminopyridine. Analytica Chimica Acta, 381, 85-91. https://elibrary.ru/item.asp?id=103559
[17]
Roger, O., Roger, O., Colliec-Jouault, S., Ratiskol, J., Sinquin, C., Guezennec, J., Fischer, A.M. and Chevolot, L. (2002) Polysaccharide Labelling: Impact on Structural and Biological Properties. Carbohydrate Polymers, 50, 273-278. https://archimer.ifremer.fr/doc/2002/publication-2113.pdf
[18]
Coté, B., Frenette, R., Prescott, S., Blouin, M., Brideau, C., Ducharme, Y., Friesen, R.W., Laliberte, F., Masson, P., Styhler, A. and Coté, Y.G. (2003) Substituted Aminopyridines as Potent and Selective Phosphodiesterase-4 Inhibitors. Bioorganic & Medicinal Chemistry Letters, 13, 741-744. http://europepmc.org/abstract/med/12270195
[19]
Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, F.A., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.G., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz. J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09, Revision-A.02. Gaussian Inc., Wallingford, CT. http://www.rsc.org/suppdata/c5/sc/c5sc02423d/c5sc02423d1.pdf
[20]
Becke, A.D. (1988) Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Physical Review A, 38, 3098. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.38.3098 https://doi.org/10.1103/PhysRevA.38.3098
[21]
Lee, C., Yang, W. and Parr, R.G. (1988) Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron density. Physical Review. B, Condensed Matter, 37, 785-789. https://www.ncbi.nlm.nih.gov/pubmed/9944570 https://doi.org/10.1103/PhysRevB.37.785
[22]
Job, P. (1928) Formation and Stability of Inorganic Complexes in Solution. Annales de Chimie, 9, 133-203. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers. aspx?ReferenceID=1156687
[23]
Skoog, D.A., Holler, F.J. and Crouch, S.R. (2017) Principal of Instrumental Analysis. 7th Edition, Sunder College Publisher, New York. https://www.amazon.com/Principles-Instrumental-Analysis-Douglas-Skoog/dp/1305577213
[24]
Goel, A. and Ram, V.J. (2009) Natural and Synthetic 2H-Pyran-2-Ones and Their Versatility in Organic Synthesis. Tetrahedron, 65, 7865-7913. https://www.academia.edu/19871203/Natural_and_synthetic_2H-pyran-2-ones_and_their_ versatility_in_organic_synthesis https://doi.org/10.1016/j.tet.2009.06.031
[25]
Al-Ahmary, K.M. (2014) Spectroscopic Characterization of Charge Transfer Complexes of 2,3-Diaminopyridine with Chloranilic Acid and Dihydroxy-p-Benzoquinone in Polar Solvent. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 635-644. https://www.sciencedirect.com/science/article/abs/pii/S1386142513010159
Aloisi, G.G. and Pignataro, S. (1973) Molecular Complexes of Substituted Thiophens with σ and π Acceptors. Charge Transfer Spectra and Ionization Potentials of the Donors. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69, 534-539. https://pubs.rsc.org/-/content/articlelanding/1973/f1/f19736900534#!divAbstract
[28]
McConnell, H., Ham, J.S. and Platt, J.R. (1953) Regularities in the Spectra of Molecular Complexes. The Journal of Chemical Physics, 21, 66-70. https://aip.scitation.org/doi/abs/10.1063/1.1698626 https://doi.org/10.1063/1.1698626
[29]
Briegleb, G. and Czekalla, J. (1960) Intensity of Electron Transition Bands in Electron Donator-Acceptor Complexes. Zeitschrift für physikalische Chemie (Frankfurt), 24, 37-54. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers. aspx?ReferenceID=419520 https://doi.org/10.1524/zpch.1960.24.1_2.037
[30]
Gaber, M. and Al-Shihry, S.S. (2005) Spectrophotometric and Electrical Studies of Charge Transfer Complexes of 2-Amino-1, 3, 4-Thiadiazole with π-Acceptors. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 62, 526-531. http://europepmc.org/abstract/med/16257756 https://doi.org/10.1016/j.saa.2005.02.005
[31]
Voigt, E.M. and Reid, C. (1964) Ionization Potentials of Substituted Benzenes and Their Charge-Transfer Spectra with Tetracyanoethylene. Journal of the American Chemical Society, 86, 3930-3934. https://pubs.acs.org/doi/abs/10.1021/ja01073a005 https://doi.org/10.1021/ja01073a005
[32]
Rathore, R., Hubig, S.M. and Kochi, J.K. (1997) Charge-Transfer Probes for Molecular Recognition via Steric Hindrance in Donor-Acceptor Pairs. Journal of the American Chemical Society, 119, 9393-9404. https://pubs.acs.org/doi/10.1021/ja9720319
[33]
Atkins, P. and Paula, J.D. (2014) Physical Chemistry: Thermodynamics, Structure, and Change. 10th Edition, W. H. Freeman, New York. https://www.amazon.com/Physical-Chemistry-Thermodynamics-Structure-Change/dp/1429290196 /ref=sr_1_1?keywords=Physical-Chemistry-Thermodynamics-Structure&qid=1575103946&sr=8-1
[34]
Martin, A.N., Swarbrick, J. and Cammarata, A. (1993) Physical Pharmacy. 4nd Edition, Williams & Wilkins, Baltimore, MD. https://trove.nla.gov.au/work/6117959?q&sort=holdings+desc&_=1575104234019&versionId=7081564+43371782
[35]
Kashanian, S., Gholivand, M.B., Ahmadi, F. and Ravan, H. (2008) Interaction of Diazinon with DNA and the Protective Role of Selenium in DNA Damage. DNA and Cell Biology, 27, 325-332. https://www.ncbi.nlm.nih.gov/pubmed/18447756 https://doi.org/10.1089/dna.2007.0718
[36]
Ross, P.D. and Subramanian, S. (1981) Thermodynamics of Protein Association Reactions: Forces Contributing to Stability. Biochemistry, 20, 3096-3102. https://www.ncbi.nlm.nih.gov/pubmed/7248271
[37]
Lerman, L.S. (1961) Structural Considerations in the Interaction of DNA and Acridines. Journal of Molecular Biology, 3, IN13-IN14. https://www.sciencedirect.com/science/article/pii/S0022283661800041
[38]
Pearson, R.G. (1988) Absolute Electronegativity and Hardness: Application to Inorganic Chemistry. Inorganic Chemistry, 27, 734-740. https://pubs.acs.org/doi/abs/10.1021/ic00277a030
[39]
Foresman, J.B. and Frisch, A.E. (1996) Exploring Chemistry with Electronic Structure Methods. 2nd Edition, Gaussian, Pittsburgh. http://blogs.cimav.edu.mx/daniel.glossman/data/files/Libros/Exploring%20Chemistry %20With%20Electronic%20Structure%20Methods.pdf
[40]
Chang, R. (2001) Chemistry. 7th Edition, McGraw-Hill, New York. https://www.abebooks.com/9780073656014/Chemistry-Seventh-Edition-Raymond-Chang- 0073656011/plp
[41]
Kosar, B. and Albayrak, C. (2011) Spectroscopic Investigations and Quantum Chemical Computational Study of (E)-4-Methoxy-2-[(p-Tolylimino)Methyl]Phenol. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78, 160-167. http://europepmc.org/abstract/med/20940104 https://doi.org/10.1016/j.saa.2010.09.016
[42]
Parr, R.G. and Yang, W. (1989) Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York.
[43]
Parr, R.G., Von Szentpàly, L. and Liu, S.B. (1999) Electrophilicity Index. Journal of the American Chemical Society, 121, 1922-1924. https://pubs.acs.org/doi/10.1021/ja983494x
[44]
Scott, A.P. and Radom, L. (1996) Harmonic Vibrational Frequencies: An Evaluation of Hartree—Fock, Moller—Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. The Journal of Physical Chemistry, 100, 16502-16513. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.609.1172&rep=rep1&type=pdf