The main aim in this work is to obtain an integral inequality with a clear estimate on time scales. The obtained inequality is used as a tool to investigate some basic qualitative properties of solutions to certain nonlinear Volterra-Fredholm integrodifferential equations on time scales.
References
[1]
Bohner, M. and Georgiev, S.G. (2016) Multivariable Dynamic Calculus on Time Scales. Springer, Berlin. https://doi.org/10.1007/978-3-319-47620-9
[2]
Bohner, M. and Peterson, A. (2001) Dynamic Equations on Time Scales: An Introduction with Applications. Springer Science & Business Media.
https://doi.org/10.1007/978-1-4612-0201-1
[3]
Georgiev, S.G. (2016) Integral Equations on Time Scales, Integral Equations on Time Scales. https://doi.org/10.2991/978-94-6239-228-1
[4]
Pachpatte, D. (2009) On a Nonstandard Volterra Type Dynamic Integral Equation on Time Scales. Electronic Journal of Qualitative Theory of Differential Equations, 72, 1-14. http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJQTDE/p459.pdf
https://doi.org/10.14232/ejqtde.2009.1.72
[5]
Pachpatte, D.B. (2010) Fredholm Type Integrodifferential Equation on Time Scales. Electronic Journal of Differential Equations (EJDE), 2010, 1-10.
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/EJDE/Volumes/2010/140/pachpatte.pdf
[6]
Pachpatte, D.B. (2013) Properties of Some Dynamic Integral Equation on Time Scales. Annals of Functional Analysis, 4, 12–26.
https://doi.org/10.15352/afa/1399899522
http://emis.ams.org/journals/AFA/AFA-tex_v4_n2_a2.pdf
[7]
Reinfelds, A. and Christian, S. (2019) Volterra Integral Equations on Unbounded Time Scales. International Journal of Difference Equations, 14, 169-177.
https://doi.org/10.37622/IJDE/14.2.2019.169-177
http://campus.mst.edu/ijde/contents/v14n2p5.pdf
[8]
Salih, O.M. and Mahmood, A.H. (2018) Approximate Solutions for Certain Integrodifferential Equations of Volterra_Fredholm Type. International Journal of Enhanced Research in Science, Technology & Engineering, 7, 37-42.