An affine quantization approach leads to a genuine quantum theory of general relativity by extracting insights from a short list of increasingly more complex, soluble, perturbably nonrenormalizable models.
References
[1]
Klauder, J.R. (2018) Quantum Field Theory with No Zero-Point Energy. JHEP, 5, 191. https://doi.org/10.1007/JHEP05(2018)191
[2]
Klauder, J.R. (1970) Ultralocal Scalar Field Models. Communications in Mathematical Physics, 18, 307-318. https://doi.org/10.1007/BF01649449
Ladyzenskaja, O.A., Solonnikov, V. and Ural’ceva, N.N. (1968) Linear and Quasi-Linear Equations of Parabolic Type. Am. Math. Soc., Providence, Vol. 23. https://doi.org/10.1090/mmono/023
[5]
Klauder, J.R. (2000 and 2005) Beyond Conventional Quantization. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511524684
[6]
Aizenman, M. (1981) Proof of the Triviality of Field Theory and Some MeanField Features of Ising Models for . Physical Review Letters, 47, E-886. https://doi.org/10.1103/PhysRevLett.47.886
[7]
Fröhlich, J. (1982) On the Triviality of Theories and the Approach to the Critical Point in Dimensions. Nuclear Physics B, 200, 281-296. https://doi.org/10.1016/0550-3213(82)90088-8
[8]
Klauder, J.R. (2011) Scalar Field Quantization without Divergences in All Spacetime Dimensions. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 273001. https://doi.org/10.1088/1751-8113/44/27/273001
[9]
Klauder, J.R. (2015) Nontrivial Quantization of . Theoretical and Mathematical Physics, 182, 83-89. https://doi.org/10.1007/s11232-015-0247-5
[10]
Klauder, J.R. (2017) Mixed Models: Combining Incompatible Scalar Models in Any Spacetime Dimension. International Journal of Modern Physics A, 32, Article ID: 1750001. https://doi.org/10.1142/S0217751X17500014
[11]
Freedman, B., Smolensky, P. and Weingarten, D. (1982) Monte Carlo Evaluation of the Continuum Limit of and . Physics Letters B, 113, 481-486. https://doi.org/10.1016/0370-2693(82)90790-0
[12]
Stankowicz, J. (2010) Private Communication.
[13]
Glimm, J. and Jaffe, A. (1987) Quantum Physics. 2nd Edition, Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-4728-9
[14]
Klauder, J.R. (2010) A Modern Approach to Functional Integration. Birkhauser, Boston. https://doi.org/10.1007/978-0-8176-4791-9
[15]
Arnowitt, R., Deser, S. and Misner, C. (1962) The Dynamics of General Relativity. In: Witten, L., Ed., Gravitation: An Introduction to Current Research, Wiley Sons, New York, 227.