The leaning of structures happens all around the world and generates impacts on different extents; thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leaning structure, the Tower of Pisa, is discussed and simulated by using a finite element code, PLAXIS. The simulation is performed on a two-dimensional plane with simplifications taken into consideration in making modeling feasible under limitations. Three distinct models are built with one as a control variable, while the other two models are set up with exact eccentricity. Data are obtained from the analysis and are plotted in a graph to clearly show the relationship between the tilting angle and construction phases. With reasonable and completed simulation, the study is able to show the significant role compressible subsoil plays in impacting the tilting performance of a tall building.
References
[1]
Britannica Online Encyclopedia (2009) Leaning Tower of Pisa (Tower, Pisa, Italy). https://www.britannica.com/topic/Leaning-Tower-of-Pisa
[2]
Duff, M. (2008) Europe | Pisa’s Leaning Tower ‘Stabilised’. BBC News, 5 May 2009.
[3]
Black, C.B. (1898) The Riviera, or the Coast from Marseilles to Leghorn: Including the Interior Towns of Carrara, Lucca, Pisa and Pistoia. A. & C. Black, London, 148.
[4]
Burland, J.B., Jamiolkowski M., Squeglia N. and Viggiani, C. (2013) The Leaning Tower of Pisa. In: Bilotta, E., Flora, A., Lirer, S. and Viggiani, C., Eds., Geotechnics and Heritage, CRC Press, London, 207-227. https://doi.org/10.1201/b14965-11
[5]
PLAXIS 8.2 (1998) Finite Element Code for Soil and Rock Analysis, Version 8.2. Brinkgreve, R.B.J. and Vermeer, P.A., Eds. Rotterdam, The Netherlands.
Fiorentino, G., Nuti, C., Squeglia, N., Lavorato, D. and Stacul, S. (2018) One-Dimensional Nonlinear Seismic Response Analysis Using Strength-Controlled Constitutive Models: The Case of the Leaning Tower of Pisa’s Subsoil. Geosciences, 8, 228. https://doi.org/10.3390/geosciences8070228
[8]
Tuladhar, R., Maki, T. and Mutsuyoshi, H. (2008) Cyclic Behavior of Laterally Loaded Concrete Piles Embedded into Cohesive Soil. Earthquake Engineering & Structural Dynamics, 37, 43-59. https://doi.org/10.1002/eqe.744