全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Distribution of Ag(I), Li(I)-Cs(I) Picrates, and Na(I) Tetraphenylborate with Differences in Phase Volume between Water and Diluents

DOI: 10.4236/ajac.2020.111003, PP. 25-46

Keywords: Standard Distribution Constants, Volume Ratios, Distribution Equilibrium Potentials, Ionic Strength Dependence, Extraction Constant, Ion-Pair Formation Constant, o-Dichlorobenzene

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ionic strength conditions in distribution experiments with single ions are very important for evaluating their distribution properties. Distribution experiments of picrates (MPic) with M = Ag(I) and Li(I)-Cs(I) into o-dichlorobenzene (oDCBz) were performed at 298 K by changing volume ratios (Vorg/V) between water and oDCBz phases, where “org” shows an organic phase. Simultaneously, an analytic equation with the Vorg/V variation was derived in order to analyze such distribution systems. Additionally, the AgPic distribution into nitrobenzene (NB), dichloromethane, and 1,2-dichloroethene (DCE) and the NaB(C6H5) 4 (=NaBPh4) one into NB and DCE were studied at 298 K under the conditions of various Vorg/V values. So, extraction constants (Kex) for MPic into the org phases, their ion-pair formation constants (KMA,org) for MA = MPic in the org ones, and standard distribution constants (\"\") for the M(I) transfers between the water and org bulk phases with M = Ag and Li-Cs were determined at the distribution equilibrium potential (dep) of zero V between the bulk phases and also the Kex (NaA), KNaA,org, and \"\" values were done at A-=BPh-4. Here, the symbols Kex, KMA,org, and \"\" or \"\" were defined as [MA] org/[M+][A-], [MA] org/[M+]org [A-]org, and [M+]org/[M+] or [A-]org/[A-] at dep = 0, respectively. Especially, the ionic strength dependences of Kex and KMPic,org were examined at M = Li(I)-K(I) and org = oDCBz. From above, the conditional distribution constants, KD,BPh4 and KD,Cs, were classified by checking the experimental conditions of the I, Iorg, and dep values.

References

[1]  Sanchez Vallejo, L.J., Ovejero, J.M., Fernández, R.A. and Dassie, E.A. (2012) Single Ion Transfer at Liquid/Liquid Interface. International Journal of Electrochemistry, 2012, Article ID: 462197.
https://doi.org/10.1155/2012/462197
[2]  Markin, V.S. and Volkov, A.G. (1989) The Gibbs Free Energy of Ion Transfer between Two Immiscible Liquids. Electrochimica Acta, 34, 93-107.
https://doi.org/10.1016/0013-4686(89)87072-0
[3]  Rais, J. (1971) Individual Extraction Constants of Univalent Ions in the System Water-Nitrobenzene. Collection of Czechoslovak Chemical Communications, 36, 3253-3262.
https://doi.org/10.1135/cccc19713253
[4]  Levitskaia, T.G., Maya, L., Van Berkel, G.J. and Moyer, B.A. (2007) Anion Partitioning and Ion Pairing Behavior of Anions in the Extraction of Cesium Salts by 4,5-Bis(tert-octylbenzo)dibenzo-24-crown-8 in 1,2-Ddichloroethane. Inorganic Chemistry, 46, 261-272.
https://doi.org/10.1021/ic061605k
[5]  Hundhammer, B. and Müller, C. (1991) Ion Transfer across the Water-o-dichloro-benzene Interface. Journal of Electroanalytical Chemistry, 319, 125-135.
https://doi.org/10.1016/0022-0728(91)87072-C
[6]  Kihara, S., Suzuki, M., Maeda, K., Ogura, K., Umetani, S. and Matsui, M. (1986) Fundamental Factors in the Polarographic Measurement of Ion Transfer at the Aqueous/Organic Solution Interface. Analytical Chemistry, 58, 2954-2961.
https://doi.org/10.1021/ac00127a013
[7]  Kudo, Y. and Katsuta, S. (2015) On an Expression of Extraction Constants without Interfacial Equilibrium-Potential Differences for the Extraction of Univalent and Divalent Metal Picrates by Crown Ether into 1,2-Dichloroethane and Nitrobenzene. American Journal of Analytical Chemistry, 6, 350-363.
https://doi.org/10.4236/ajac.2015.64034
[8]  Kudo, Y., Harashima, K., Hiyoshi, K., Takagi, J., Katsuta, S. and Takeda, Y. (2011) Extraction of Some Univalent Salts into 1,2-Dichloroethane and Nitrobenzene: Analysis of Overall Extraction Equilibrium Based on Elucidating Ion-Pair Formation and Evaluation of Standard Potentials for Ion Transfer at the Interface between Their Diluents and Water. Analytical Sciences, 27, 913-919.
https://doi.org/10.2116/analsci.27.913
[9]  Makrlík, E., Vaňura, P. and Selucky, P. (2008) Solvent Extraction of Ba2+, Pb2+, and Cd2+ into Nitrobenzene by Using Strontium Dicarbollylcobaltate in the Presence of Tetraethyl p-tert-butylcalix[4]arene Tetraacetate. Acta Chimica Slovenica, 55, 430-433.
https://doi.org/10.1007/s10967-007-7110-6
[10]  Takeda, Y., Ezaki, T., Kudo, Y. and Matsuda, H. (1995) Distribution Study on Electroneutral and Protonated Amino Acids between Water and Nitrobenzene. Determination of the Standard Ion-Transfer Potentials of Protonated Amino Acids. Bulletin of the Chemical Society of Japan, 68, 787-790.
https://doi.org/10.1246/bcsj.68.787
[11]  Danil de Namor, A.F., Traboulssi, Y., Salazar, F.F., Dianderas de Acosta, V., Fernández de Vizcardo, Y. and Portugal, J.M. (1989) Transfer and Partition Free Energies of 1:1 Electrolytes in the Water-Dichloromethane Solvent System at 298.15 K. Journal of the Chemical Society, Faraday Transactions I, 85, 2705-2712.
https://doi.org/10.1039/f19898502705
[12]  De Levie, R. (1999) Aqueous Acid-Base Equilibria and Titrations. In: Davies, S.G., Compton, R.G., Evans, J. and Gladden, L.F., Eds., Oxford Chemistry Primers, Oxford University Press, Oxford, 59-63.
[13]  Kudo, Y., Wakasa, M., Ito, T., Usami, J., Katsuta, S. and Takeda, Y. (2005) Determination of Ion-Pair Formation Constants of Univalent Metal-Crown Ether Complex Ions with Anions in Water Using Ion-Selective Electrodes: Application of Modified Determination Methods to Several Salts. Analytical and Bioanalytical Chemistry, 381, 456-463.
https://doi.org/10.1007/s00216-004-2885-6
[14]  Kudo, Y., Ikeda, S., Morioka, S. and Katsuta, S. (2017) Silver(I) Extraction with Benzo-18-crown-6 Ether from Water into 1,2-Dichloroethane: Analyses on Ionic Strength of the Phases and Their Equilibrium Potentials. Inorganics, 5, 42.
https://doi.org/10.3390/inorganics5030042
[15]  Kudo, Y., Ishikawa, Y. and Ichikawa, H. (2018) CdI2 Extraction with 18-Crown-6 Ether into Various Diluents: Classification of Extracted Cd(II) Complex Ions Based on the HSAB Principle. American Journal of Analytical Chemistry, 9, 560-579.
https://doi.org/10.4236/ajac.2018.911041
[16]  Kakiuchi, T. (1996) Equilibrium Electric Potential between Two Immiscible Electrolyte Solutions. In: Volkov, A.G. and Dreamer, D.W., Eds., Liquid-Liquid Interfaces: Theory and Methods, CRC Press, New York, Ch. 1.
[17]  Kudo, Y. (2019) On the Definition of Distribution Equilibrium Potentials in the Distribution Systems with Simple Salts. Journal of Analytical & Pharmaceutical Research, 8, 172-174.
[18]  Czapkiewcz, J. and Czapkiewcz-Tutaj, B. (1980) Relative Scale of Free Energy of Transfer of Anions from Water to 1,2-Dichloroethane. Journal of the Chemical Society, Faraday Transactions I, 76, 1663-1668.
https://doi.org/10.1039/f19807601663
[19]  Kudo, Y. (2013) Potentiometric Determination of Ion-Pair Formation Constants of Crown Ether-Complex Ions with Some Pairing Anions. In: Khalid, M.M.A., Ed., Water Using Commercial Ion-Selective Electrodes in Electrochemistry, InTechOpen Access Publisher, Rijeka, 108-109.
https://doi.org/10.5772/48206
[20]  Yoshida, Y., Matsui, M., Shirai, O., Maeda, K. and Kihara, S. (1998) Evaluation of Distribution Ratio in Ion Pair Extraction Using Fundamental Thermodynamic Quantities. Analytica Chimica Acta, 373, 213-225.
https://doi.org/10.1016/S0003-2670(98)00367-5
[21]  Kikuchi, Y., Sakamoto, Y. and Sawada, K. (1998) Partition of Alkali-Metal Ion and Complex Formation with Poly(oxyethylene) Derivatives in 1,2-Dichloroethane. Journal of the Chemical Society, Faraday Transactions, 94, 105-109.
https://doi.org/10.1039/a704622g
[22]  Hung, L.Q. (1980) Electrochemical Properties of the Interface between Two Immiscible Electrolyte Solutions. Part I. Equilibrium Situation and Galvani Potential Difference. Journal of Electroanalytical Chemistry, 115, 159-174.
https://doi.org/10.1016/S0022-0728(80)80323-8
[23]  Reardon, E.J. (1975) Dissociation Constants of Some Univalent Sulfate Ion Pairs at 25° from Stoichiometric Activity Coefficients. The Journal of Physical Chemistry, 79, 422-425.
https://doi.org/10.1021/j100572a005
[24]  Katayama, S. (1973) Conductometric Determination of Ion-Association Constants for Magnesium and Nickel Sulfates at Various Temperatures between 0°C and 45°C. Bulletin of the Chemical Society of Japan, 46, 106-109.
https://doi.org/10.1246/bcsj.46.106

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133