全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

World-Universe Model—Alternative to Big Bang Model

DOI: 10.4236/jhepgc.2020.61012, PP. 133-158

Keywords: Big Bang Model, Four Pillars of Standard Cosmology, Angular Momentum Problem, Black Holes, Hypersphere World-Universe Model, Multicomponent Dark Matter, Macroobjects Structure, Law of Conservation of Angular Momentum, Medium of the World, Inter-Connectivity of Primary Cosmological Parameters, The Beginning of the World, Dark Epoch, Rotational Fission, Luminous Epoch, Macroobject Shell Model, Dark Matter Core, Gravitational Burst, Intergalactic Plasma, Microwave Background Radiation, Far-Infrared Background Radiation, Emergent Phenomena, CODATA

Full-Text   Cite this paper   Add to My Lib

Abstract:

This manuscript provides a comparison of the Hypersphere World-Universe Model (WUM) with the prevailing Big Bang Model (BBM) of the Standard Cosmology. The performed analysis of BBM shows that the Four Pillars of the Standard Cosmology are model-dependent and not strong enough to support the model. The angular momentum problem is one of the most critical problems in BBM. Standard Cosmology cannot explain how Galaxies and Extra Solar systems obtained their substantial orbital and rotational angular momenta, and why the orbital momentum of Jupiter is considerably larger than the rotational momentum of the Sun. WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM discusses in detail the Beginning of the World. The Model introduces Dark Epoch (spanning from the Beginning of the World for 0.4 billion years) when only Dark Matter Particles (DMPs) existed, and Luminous Epoch (ever since for 13.8 billion years). Big Bang discussed in Standard Cosmology is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning Dark Matter (DM) Supercluster’s Cores. WUM envisions Matter carried from the Universe into the World from the fourth spatial dimension by DMPs. Ordinary Matter is a byproduct of DM annihilation. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it; Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center; Diversity of Gravitationally-Rounded Objects in Solar system; some problems in Solar and Geophysics [1]. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.

References

[1]  Netchitailo, V. (2019) Dark Matter Cosmology and Astrophysics. Journal of High Energy Physics, Gravitation and Cosmology, 5, 999-1050.
https://doi.org/10.4236/jhepgc.2019.54056
[2]  The Four Pillars of the Standard Cosmology.
http://www.damtp.cam.ac.uk/research/gr/public/bb_pillars.html
[3]  Shortcomings of the Standard Cosmology.
http://www.damtp.cam.ac.uk/research/gr/public/bb_problems.html
[4]  Couronne, I. and Ahmed, I. (2019) Top Cosmologist’s Lonely Battle against “Big Bang” Theory.
https://phys.org/news/2019-11-cosmologist-lonely-big-theory.html
[5]  Silk, J. (2018) Towards the Limits of Cosmology. Foundations of Physics, 48, 1305-1332.
https://doi.org/10.1007/s10701-018-0183-y
[6]  Conover, E. (2019) Debate over the Universe’s Expansion Rate May Unravel Physics. Is It a Crisis? ScienceNews.
https://www.sciencenews.org/article/debate-universe-expansion-rate-hubble-constant-physics-crisis
[7]  Verde, L., Treu, T. and Riess, A.G. (2019) Tensions between the Early and the Late Universe. Nature Astronomy, 3, 891-895.
https://doi.org/10.1038/s41550-019-0902-0
[8]  Keane, E.F., et al. (2016) A Fast Radio Burst Host Galaxy. Nature, 530, 453-456.
https://doi.org/10.1038/nature17140
[9]  Wikipedia. Big Bang Nucleosynthesis.
https://en.wikipedia.org/wiki/Big_Bang_nucleosynthesis#cite_ref-13
[10]  Anders, M., et al. (2014) First Direct Measurement of the 2H(α,γ)6Li Cross Section at Big Bang Energies and the Primordial Lithium Problem. Physical Review Letters, 113, Article ID: 042501.
https://doi.org/10.1103/PhysRevLett.113.042501
[11]  Burbidge, E.M., Burbidge, G.R., Fowler, W.A. and Hoyle, F. (1957) Synthesis of the Elements in Stars. Reviews of Modern Physics, 29, 547-650.
https://doi.org/10.1103/RevModPhys.29.547
[12]  Lopez-Corredoira, M. (2017) Tests and Problems of the Standard Model in Cosmology. Foundations of Physics, 47, 711-768.
https://doi.org/10.20944/preprints201702.0002.v1
[13]  NASA (2015) The Cosmic Distance Scale.
https://imagine.gsfc.nasa.gov/features/cosmic/local_supercluster_info.html
[14]  Karachentsev, I. (1987) Double Galaxies. 7.1. The Orbital and Internal Angular Momentum of Galaxies in Pairs. Izdatel’stvo Nauka. Moscow.
https://ned.ipac.caltech.edu/level5/Sept02/Keel/Keel7.html
[15]  Toth, V.T. (2019) Is a Black Hole Technically 2-Dimensional? Quora.
https://mail.google.com/mail/u/0/?tab=rm&ogbl#inbox/FMfcgxwGBmrfKchQCdbTTjWvmLcpPCpl
[16]  Cahill, D. (2014) Radio Galaxy Discovery near Earth Spurs More Questions.
https://phys.org/news/2014-05-radio-galaxy-discovery-earth-spurs.html
[17]  Van Dokkum, P., et al. (2019) A High Stellar Velocity Dispersion and ~100 Globular Clusters for the Ultra Diffuse Galaxy Dragonfly 44. The Astrophysical Journal Letters, 828, L6.
https://doi.org/10.3847/2041-8205/828/1/L6
[18]  Narayan, R., McClintock, J.E. and Yi, I. (1995) A New Model for Black Hole Soft X-Ray Transients in Quiescence. Astrophysical Journal, 457, 821.
https://doi.org/10.1086/176777
[19]  Gebhardt, K., Rich, R.M. and Luis Ho, L. (2002) A 20 Thousand Solar Mass Black Hole in the Stellar Cluster G1. Astrophysical Journal, 578, L41-L46.
https://doi.org/10.1086/342980
[20]  Chomiuk, L., et al. (2013) A Radio-Selected Black Hole X-Ray Binary Candidate in the Milky Way Globular Cluster M62. The Astrophysical Journal, 777, 69.
https://doi.org/10.1088/0004-637X/777/1/69
[21]  Giesers, B., et al. (2018) A Detached Stellar-Mass Black Hole Candidate in the Globular Cluster NGC 3201. Monthly Notices of the Royal Astronomical Society: Letters, 475, L15-L19.
https://doi.org/10.1093/mnrasl/slx203
[22]  Liu, J., et al. (2019) A Wide Star-Black-Hole Binary System from Radial-Velocity Measurements. Nature, 575, 618-621.
https://doi.org/10.1038/s41586-019-1766-2
[23]  Mersini-Houghton, L. (2014) Back-Reaction of the Hawking Radiation Flux on a Gravitationally Collapsing Star II. Physics Letters B, 738, 61-67.
https://doi.org/10.1016/j.physletb.2014.09.018
[24]  Leane, R.K. and Slatyer, T.R. (2019) Revival of the Dark Matter Hypothesis for the Galactic Center Gamma-Ray Excess. Physical Review Letters, 123, Article ID: 241101.
https://doi.org/10.1103/PhysRevLett.123.241101
[25]  Spolyar, D., Freese, K. and Gondolo, P. (2007) The Effect of Dark Matter and the First Stars: A New Phase of Stellar Evolution. AIP Conference Proceedings, 990, 42.
https://doi.org/10.1063/1.2905656
[26]  Freese, K., Rindler-Daller, T., Spolyar, D. and Valluri, M. (2015) Dark Stars: A Review. Reports on Progress in Physics, 79, Article ID: 066902.
https://doi.org/10.1088/0034-4885/79/6/066902
[27]  Lee, B.W. and Weinberg, S. (1977) Cosmological Lower Bound on Heavy-Neutrino Masses. Physical Review Letters, 39, 165-168.
https://doi.org/10.1103/PhysRevLett.39.165
[28]  Dicus, D.A., Kolb, E.W. and Teplitz, V.L. (1977) Cosmological Upper Bound on Heavy-Neutrino Lifetimes. Physical Review Letters, 39, 168-171.
https://doi.org/10.1103/PhysRevLett.39.168
[29]  Dicus, D.A., Kolb, E.W. and Teplitz, V.L. (1978) Cosmological Implications of Massive, Unstable Neutrinos. The Astrophysical Journal, 221, 327-341.
https://doi.org/10.1086/156031
[30]  Gunn, J.E., et al. (1978) Some Astrophysical Consequences of the Existence of a Heavy Stable Neutral Lepton. The Astrophysical Journal, 223, 1015-1031.
https://doi.org/10.1086/156335
[31]  Stecker, F.W. (1978) The Cosmic Gamma-Ray Background from the Annihilation of Primordial Stable Neutral Heavy Leptons. The Astrophysical Journal, 223, 1032-1036.
https://doi.org/10.1086/156336
[32]  Zeldovich, Ya.B., Klypin, A.A., Khlopov, M.Yu. and Chechetkin, V.M. (1980) Astrophysical Constraints on the Mass of Heavy Stable Neutral Leptons. Soviet Journal of Nuclear Physics, 31, 664-669.
[33]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics, 18, 2275-2282.
https://doi.org/10.1142/S0218271809015904
[34]  Bertone, G. and Tait, T.M.P. (2018) A New Era in the Quest for Dark Matter.
[35]  Boehm, C., Fayet, P. and Silk, J. (2003) Light and Heavy Dark Matter Particles. Physical Review D, 69, 101302(R).
https://doi.org/10.1103/PhysRevD.69.101302
[36]  Mehrgan, K., et al. (2019) A 40-Billion Solar Mass Black Hole in the Extreme Core of Holm 15A, the Central Galaxy of Abell 85. The Astrophysical Journal, 887, 195.
https://doi.org/10.3847/1538-4357/ab5856
[37]  Riemann, B. (1854) On the Hypotheses Which Lie at the Bases of Geometry. Nature, 8, 14-17, 36, 37.
https://doi.org/10.1038/008036a0
[38]  Bennett, C.L., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, 20.
https://doi.org/10.1088/0067-0049/208/2/20
[39]  Abbott, T.M.C., et al. (2017) Dark Energy Survey Year 1 Results: A Precise H0 Measurement from DES Y1, BAO, and D/H Data. Monthly Notices of the Royal Astronomical Society, 480, 3879-3888.
https://doi.org/10.1093/mnras/sty1939
[40]  Freedman, W.L., et al. (2019) The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. The Astrophysical Journal, 882, 34.
https://doi.org/10.3847/1538-4357/ab2f73
[41]  Fixsen, D.J. (2009) The Temperature of the Cosmic Microwave Background. The Astrophysical Journal, 707, 916.
https://doi.org/10.1088/0004-637X/707/2/916
[42]  Mirizzi, A., Raffelt, G.G. and Serpico, P.D. (2006) Photon-Axion Conversion in Intergalactic Magnetic Fields and Cosmological Consequences. Lecture Notes in Physics, 741, 115-134.
https://doi.org/10.1007/978-3-540-73518-2_7
[43]  Bonetti, L., et al. (2017) FRB 121102 Casts New Light on the Photon Mass. Physics Letters B, 768, 326-329.
https://doi.org/10.1016/j.physletb.2017.03.014
[44]  Lagache, G., et al. (1999) First Detection of the Warm Ionized Medium Dust Emission. Implication for the Cosmic Far-Infrared Background. Astronomy and Astrophysics, 344, 322-332.
[45]  Tully, R.B. (1982) The Local Supercluster. Astrophysical Journal, 257, 389-422.
https://doi.org/10.1086/159999
[46]  Heymans, C., et al. (2008) The Dark Matter Environment of the Abell 901/902 Supercluster: A Weak Lensing Analysis of the HST STAGES Survey. Monthly Notices of the Royal Astronomical Society, 385, 1431-1442.
https://doi.org/10.1111/j.1365-2966.2008.12919.x
[47]  Zwicky, F. (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta, 6, 110-127.
[48]  Ness, M., et al. (2015) The Cannon: A Data-Driven Approach to Stellar Label Determination. The Astrophysical Journal, 808, 16.
https://doi.org/10.1088/0004-637X/808/1/16
[49]  Bond, H.E., et al. (2013) HD 140283: A Star in the Solar Neighborhood That Formed Shortly after the Big Bang. The Astrophysical Journal Letters, 765, L12.
https://doi.org/10.1088/2041-8205/765/1/L12
[50]  Marchetti, T., Rossi, E.M. and Brown, A.G.A. (2018) Gaia DR2 in 6D: Searching for the Fastest Stars in the Galaxy. Monthly Notices of the Royal Astronomical Society, 490, 157-171.
https://doi.org/10.1093/mnras/sty2592
[51]  Koposov, S.E., et al. (2019) The Great Escape: Discovery of a Nearby 1700 km/s Star Ejected from the Milky Way by Sgr A*. Monthly Notices of the Royal Astronomical Society, 491, 2465-2480.
https://doi.org/10.1093/mnras/stz3081
[52]  Irrgang, A., et al. (2019) PG 1610 + 062: A Runaway B Star Challenging Classical Ejection Mechanisms. Astronomy & Astrophysics, 628, L5.
https://doi.org/10.1051/0004-6361/201935429
[53]  Clarke, C.J., et al. (2018) High-Resolution Millimeter Imaging of the CI Tau Protoplanetary Disk: A Massive Ensemble of Protoplanets from 0.1 to 100 au. The Astrophysical Journal Letters, 866, L6.
https://doi.org/10.3847/2041-8213/aae36b
[54]  Aguilar, D.A. and Pulliam, C. (2010) Astronomers Find Giant, Previously Unseen Structure in Our Galaxy. Harvard-Smithsonian Center for Astrophysics. Release No. 2010-22.
[55]  Yang, L. and Razzaque, S. (2019) Constraints on Very High Energy Gamma-Ray Emission from the Fermi Bubbles with Future Ground-Based Experiments. Physical Review D, 99, Article ID: 083007.
https://doi.org/10.1103/PhysRevD.99.083007
[56]  Su, M. and Finkbeiner, D.P. (2012) Evidence for Gamma-Ray Jets in the Milky Way. The Astrophysical Journal, 753, 61.
https://doi.org/10.1088/0004-637X/753/1/61
[57]  Ponti, G., et al. (2019) An X-Ray Chimney Extending Hundreds of Parsecs above and below the Galactic Centre. Nature, 567, 347-350.
https://doi.org/10.1038/s41586-019-1009-6
[58]  Hooper, D. and Slatyer, T.R. (2013) Two Emission Mechanisms in the Fermi Bubbles: A Possible Signal of Annihilating Dark Matter. Physics of the Dark Universe, 2, 118-138.
https://doi.org/10.1016/j.dark.2013.06.003
[59]  Hooper, D. and Goodenough, L. (2011) Dark Matter Annihilation in the Galactic Center as Seen by the Fermi Gamma Ray Space Telescope. Physics Letters B, 697, 412-428.
https://doi.org/10.1016/j.physletb.2011.02.029
[60]  McDaniel, A., Jeltema, T. and Profumo, S. (2018) A Multi-Wavelength Analysis of Annihilating Dark Matter as the Origin of the Gamma-Ray Emission from M31. Physical Review D, 97, Article ID: 103021.
https://doi.org/10.1103/PhysRevD.97.103021
[61]  Yang, H.Y.K., Ruszkowski, M. and Zweibel, E.G. (2018) Unveiling the Origin of the Fermi Bubbles. Galaxies, 6, 29.
https://doi.org/10.3390/galaxies6010029
[62]  Beall, J.H. (2015) A Review of Astrophysical Jets. Proceedings of Science: 58.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133