全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dark Matter and Baryons (Surplus Quarks) Generated by Oblique Confinement of Quarks

DOI: 10.4236/jhepgc.2020.61011, PP. 123-132

Keywords: Quark Confinement, Matter-Antimatter Asymmetry, Dark Matter, Black Holes, New Vacuum, Baryogenesis, Inflation, WIMPs

Full-Text   Cite this paper   Add to My Lib

Abstract:

For surplus quarks (and baryons) to emerge after Big Bang, a nonequilibrium binding and superconductor-like condensation of quark-antiquark pairs must occur before the electroweak (EW) symmetry breakdown (similar for leptons). The formerly unknown dimensionless coupling to the Ginsburg-Landau like potential and the scale parameter in the EW theory then become microscopic functions of the massive quark and antiquark fields, thus defining the matter-antimatter asymmetry and the dark matter content in the Universe at correct orders of magnitude. Thereby also the number of free parameters in the Standard Model is reduced.

References

[1]  Nielsen, H.B. and Olesen, P. (1973) Vortex-Line Models for Dual Strings. Nuclear Physics B, 61, 45-61.
https://doi.org/10.1016/0550-3213(73)90350-7
[2]  Nambu, Y. (1974) Strings, Monopoles, and Gauge Fields. Physical Review D, 10, 4262-4268.
https://doi.org/10.1103/PhysRevD.10.4262
[3]  ’t Hooft, G. (1981) Topology of the Gauge Condition and New Confinement Phases in Non-Abelian Gauge Theories. Nuclear Physics B, 190, 455-478.
https://doi.org/10.1016/0550-3213(81)90442-9
[4]  Ezawa, Z.F. and Iwazaki, A. (1982) Abelian Dominance and Quark Confinement in Yang-Mills Theories. Physical Review D, 25, 2681-2689.
https://doi.org/10.1103/PhysRevD.25.2681
[5]  Kondo, K.-I. (1998) Abelian-Projected Effective Gauge Theory of QCD with Asymptotic Freedom and Quark Confinement. Progress of Theoretical Physics Supplements, 131, 243-255.
https://doi.org/10.1143/PTPS.131.243
[6]  Sakharov, A. (1967) Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. JETP Letters, 5, 24-27.
[7]  NASA News (2013) Planck Mission Brings Universe Into Shap Focus.
https://www.astronomy.com/news71013/03/
[8]  Matsson, L. and Meuldermans, R. (1977) Long Range Correlations in Forward Quark- (anti-) Quark Scattering in QCD. Physics Letters B, 70, 309-312.
https://doi.org/10.1016/0370-2693(77)90665-7
[9]  Bardeen, W.A., Hill, C.T. and Lindner, M. (1990) Minimal Dynamical Symmetry Breaking of the Standard Model. Physical Review D, 41, 1647-1660.
https://doi.org/10.1103/PhysRevD.41.1647
[10]  Wilczek, F. (2012) Origins of Mass. Central European Journal of Physics, 10, 1021-1037.
https://doi.org/10.2478/s11534-012-0121-0
[11]  Nambu, Y. and Jona-Lasino, G. (1961) Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Physical Review, 121, 345-358.
https://doi.org/10.1103/PhysRev.122.345
[12]  Mandelstam, S. (1976) II. Vortices and Quark Confinement in Non-Abelian Gauge Theories. Physics Reports, 23, 245-249.
https://doi.org/10.1016/0370-1573(76)90043-0
[13]  Capitani, S., Lüscher, M., Sommer, R. and Wittig, H. (1999) Non-Perturbative Quark Mass Renormalization in Quenched Lattice QCD. Nuclear Physics B, 544, 669-698.
https://doi.org/10.1016/S0550-3213(98)00857-8
[14]  Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432.
https://doi.org/10.1146/annurev.astro.46.060407.145243
[15]  Mishustin, I.N. and Scavenius, O. (1997) Dynamical Generation of the Constituent Mass in Expanding Plasma. Physics Letters B, 396, 33-38.
https://doi.org/10.1016/S0370-2693(97)00136-6
[16]  Fukuda, Y., et al. (1998) Evidence for Oscillation of Atmospheric Neutrinos. Physical Review Letters, 81, 1562-1567.
https://doi.org/10.1103/PhysRevLett.81.1562
[17]  Di Bari, P. (2012) An Introduction to Leptogenesis and Neutrino Properties. Contemporary Physics, 53, 315-338.
https://doi.org/10.1080/00107514.2012.701096
[18]  Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606.
https://doi.org/10.1103/RevModPhys.75.559
[19]  Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
[20]  Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282.
https://doi.org/10.1142/S0218271809015904
[21]  Matsson, L. (2016) Higgs-Like Mechansim by Confinement of Quarks in a Chemical Non-Equilibrium Model. World Journal of Mechanics, 6, 441-445.
https://doi.org/10.4236/wjm.2016.611031
[22]  Matsson, L. (2017) On Dark Matter Identification. World Journal of Mechanics, 7, 133-141.
https://doi.org/10.4236/wjm.2017.74012
[23]  Tan, A., et al. (2016) Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Physical Review Letters, 117, Article ID: 121303.
[24]  Akireb, D.S., et al. (2017) Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118, Article ID: 021303.
[25]  Buckley, M.R. and DiFranzo, A. (2018) Collapsed Dark Matter Structures. Physical Review Letters, 120, Article ID: 051102.
https://doi.org/10.1103/PhysRevLett.120.051102
[26]  Silk, J. (2018) Molecular Ionization Rates and Ultracompact Dark Matter Minihalos. Physical Review Letters, 121, Article ID: 231105.
https://doi.org/10.1103/PhysRevLett.121.231105

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133