For surplus quarks (and baryons) to emerge after Big Bang, a nonequilibrium binding and superconductor-like condensation of quark-antiquark pairs must occur before the electroweak (EW) symmetry breakdown (similar for leptons). The formerly unknown dimensionless coupling to the Ginsburg-Landau like potential and the scale parameter in the EW theory then become microscopic functions of the massive quark and antiquark fields, thus defining the matter-antimatter asymmetry and the dark matter content in the Universe at correct orders of magnitude. Thereby also the number of free parameters in the Standard Model is reduced.
References
[1]
Nielsen, H.B. and Olesen, P. (1973) Vortex-Line Models for Dual Strings. Nuclear Physics B, 61, 45-61. https://doi.org/10.1016/0550-3213(73)90350-7
[2]
Nambu, Y. (1974) Strings, Monopoles, and Gauge Fields. Physical Review D, 10, 4262-4268. https://doi.org/10.1103/PhysRevD.10.4262
[3]
’t Hooft, G. (1981) Topology of the Gauge Condition and New Confinement Phases in Non-Abelian Gauge Theories. Nuclear Physics B, 190, 455-478. https://doi.org/10.1016/0550-3213(81)90442-9
[4]
Ezawa, Z.F. and Iwazaki, A. (1982) Abelian Dominance and Quark Confinement in Yang-Mills Theories. Physical Review D, 25, 2681-2689. https://doi.org/10.1103/PhysRevD.25.2681
[5]
Kondo, K.-I. (1998) Abelian-Projected Effective Gauge Theory of QCD with Asymptotic Freedom and Quark Confinement. Progress of Theoretical Physics Supplements, 131, 243-255. https://doi.org/10.1143/PTPS.131.243
[6]
Sakharov, A. (1967) Violation of CP Invariance, C Asymmetry, and Baryon Asymmetry of the Universe. JETP Letters, 5, 24-27.
[7]
NASA News (2013) Planck Mission Brings Universe Into Shap Focus. https://www.astronomy.com/news71013/03/
[8]
Matsson, L. and Meuldermans, R. (1977) Long Range Correlations in Forward Quark- (anti-) Quark Scattering in QCD. Physics Letters B, 70, 309-312. https://doi.org/10.1016/0370-2693(77)90665-7
[9]
Bardeen, W.A., Hill, C.T. and Lindner, M. (1990) Minimal Dynamical Symmetry Breaking of the Standard Model. Physical Review D, 41, 1647-1660. https://doi.org/10.1103/PhysRevD.41.1647
[10]
Wilczek, F. (2012) Origins of Mass. Central European Journal of Physics, 10, 1021-1037. https://doi.org/10.2478/s11534-012-0121-0
[11]
Nambu, Y. and Jona-Lasino, G. (1961) Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. I. Physical Review, 121, 345-358. https://doi.org/10.1103/PhysRev.122.345
[12]
Mandelstam, S. (1976) II. Vortices and Quark Confinement in Non-Abelian Gauge Theories. Physics Reports, 23, 245-249. https://doi.org/10.1016/0370-1573(76)90043-0
[13]
Capitani, S., Lüscher, M., Sommer, R. and Wittig, H. (1999) Non-Perturbative Quark Mass Renormalization in Quenched Lattice QCD. Nuclear Physics B, 544, 669-698. https://doi.org/10.1016/S0550-3213(98)00857-8
[14]
Frieman, J.A., Turner, M.S. and Huterer, D. (2008) Dark Energy and the Accelerating Universe. Annual Review of Astronomy and Astrophysics, 46, 385-432. https://doi.org/10.1146/annurev.astro.46.060407.145243
[15]
Mishustin, I.N. and Scavenius, O. (1997) Dynamical Generation of the Constituent Mass in Expanding Plasma. Physics Letters B, 396, 33-38. https://doi.org/10.1016/S0370-2693(97)00136-6
[16]
Fukuda, Y., et al. (1998) Evidence for Oscillation of Atmospheric Neutrinos. Physical Review Letters, 81, 1562-1567. https://doi.org/10.1103/PhysRevLett.81.1562
[17]
Di Bari, P. (2012) An Introduction to Leptogenesis and Neutrino Properties. Contemporary Physics, 53, 315-338. https://doi.org/10.1080/00107514.2012.701096
[18]
Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559-606. https://doi.org/10.1103/RevModPhys.75.559
[19]
Abbott, B.P., et al. (2016) Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 116, Article ID: 061102.
[20]
Corda, C. (2009) Interferometric Detection of Gravitational Waves: The Definitive Test for General Relativity. International Journal of Modern Physics D, 18, 2275-2282. https://doi.org/10.1142/S0218271809015904
[21]
Matsson, L. (2016) Higgs-Like Mechansim by Confinement of Quarks in a Chemical Non-Equilibrium Model. World Journal of Mechanics, 6, 441-445. https://doi.org/10.4236/wjm.2016.611031
[22]
Matsson, L. (2017) On Dark Matter Identification. World Journal of Mechanics, 7, 133-141. https://doi.org/10.4236/wjm.2017.74012
[23]
Tan, A., et al. (2016) Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Physical Review Letters, 117, Article ID: 121303.
[24]
Akireb, D.S., et al. (2017) Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118, Article ID: 021303.
[25]
Buckley, M.R. and DiFranzo, A. (2018) Collapsed Dark Matter Structures. Physical Review Letters, 120, Article ID: 051102. https://doi.org/10.1103/PhysRevLett.120.051102
[26]
Silk, J. (2018) Molecular Ionization Rates and Ultracompact Dark Matter Minihalos. Physical Review Letters, 121, Article ID: 231105. https://doi.org/10.1103/PhysRevLett.121.231105