全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxygen Plasma/Bismuth Modified Inkjet Printed Graphene Electrode for the Sensitive Simultaneous Detection of Lead and Cadmium

DOI: 10.4236/ajac.2020.111001, PP. 1-14

Keywords: Inkjet Printing Technology, Disposable Printed Graphene Electrode, Heavy Metals, Stripping Voltammetry

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, a simple procedure for the preparation of an inkjet printed disposable graphene electrode is reported. Commercial graphene ink was printed on a kapton substrate and the resulting electrode was 30 min treated by oxygen plasma, then modified by a bismuth salt. The as prepared electrode was characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), laser scanning microscopy (LSM) and scanning electron microscopy (SEM) coupled to energy-dispersive X-ray spectroscopy (EDX). The sensing properties of the characterized electrodes were then investigated using cyclic voltammetry and Electrochemical Impedance Spectroscopy (EIS). Afterwards, these electrodes were exploited in a comparative way for the electroanalysis of Cadmium(II) and Lead(II) ions. An increase in the electrode sensitivity due to its modification and to the presence of bismuth was observed. Some preliminary experiments based on stripping square wave voltammetry highlighted the interest of using the proposed disposable inkjet printed electrodes for the electrochemical detection of heavy metals in tap water.

References

[1]  Samiey, B., Cheng, C.H. and Wu, J. (2014) Organic-Inorganic Hybrid Polymers as Adsorbents for Removal of Heavy Metal Ions from Solutions: A Review. Journal of Materials, 7, 673-726.
https://doi.org/10.3390/ma7020673
[2]  Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. and Beeregowda, K.N. (2014) Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdisciplinary Toxicology, 7, 60-72.
https://doi.org/10.2478/intox-2014-0009
[3]  Jarup, L. (2003) Hazards of Heavy Metals Contamination. British Medical Bulletin, 68, 167-182.
https://doi.org/10.1093/bmb/ldg032
[4]  Lu, F. and Astruc, D. (2018) Nanomaterials for Removal of Toxic Elements from Water. Coordination Chemistry Review, 356, 147-164.
https://doi.org/10.1016/j.ccr.2017.11.003
[5]  Fan, C.S., Liou, S.Y.H. and Hou, C.H. (2017) Capacitive Deionization of Arsenic-Contaminated Groundwater in a Single-Pass Mode. Chemosphere, 184, 924-931.
https://doi.org/10.1016/j.chemosphere.2017.06.068
[6]  World Health Organization (WHO) (2010).
http://www.who.int/about/licensing/copyright_form/en/index.html
[7]  Kaplan, I.O., Ince, M., Yonten, V. and Goksu, A. (2017) A Food Waste Utilization Study for Removing Lead (II) from Drinks. Food Chemistry, 214, 637-643.
https://doi.org/10.1016/j.foodchem.2016.07.117
[8]  Gottesfeld, P. and Pokhrel, A.K. (2011) Review: Lead Exposure in Battery Manufacturing and Recycling in Developing Countries and among Children in Nearby Communities. Journal of Occupational and Environmental Hygiene, 8, 520-532.
https://doi.org/10.1080/15459624.2011.601710
[9]  Joseph, P. (2009) Mechanisms of Cadmium Carcinogenesis. Toxicology and Applied Pharmacology, 238, 272-279.
https://doi.org/10.1016/j.taap.2009.01.011
[10]  Bansod, B., Kumar, T., Thakur, R., Rana, S. and Singh, I. (2017) A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosensors and Bioelectronics, 94, 443-455.
https://doi.org/10.1016/j.bios.2017.03.031
[11]  World Health Organization (WHO) Geneva, Switzerland (2011).
http://www.who.int/about/licensing/copyright_form/en/index.html
[12]  Sánchez, J., Butter, B., Rivas, B.L., Basáez, L. and Santander, P. (2015) Electrochemical Oxidation and Removal of Arsenic Using Water-Soluble Polymers. Journal of Applied Electrochemistry, 45, 151-159.
https://doi.org/10.1007/s10800-014-0785-9
[13]  Abiman, P., Wildgoose, G.G., Crossley, A. and Compton, R.G. (2009) Quantitative Studies of Metal Ion Adsorption on a Chemically Modified Carbon Surface: Adsorption of Cd (II) and Hg (II) on Glutathione Modified Carbon. Electroanalysis, 21, 897-903.
https://doi.org/10.1002/elan.200804519
[14]  Abiman, P., Wildgoose, G.G., Crossley, A. and Compton, R.G. (2008) Removal of Palladium Ions from Aqueous Systems by Chemically Modified Cysteine Carbon Powder. Journal of Materials Chemistry, 18, 3948-3953.
https://doi.org/10.1039/b805804k
[15]  Xiao, L., Wildgoose, G.G., Crossley, A., Knight, R., Jones, J.H. and Compton, R.G. (2006) Removal of Toxic Metal-Ion Pollutants from Water by Using Chemically Modified Carbon Powders. Chemistry: An Asian Journal, 1, 614-622.
https://doi.org/10.1002/asia.200600136
[16]  Zhu, Y., Murali, S., Cai, W., et al. (2010) Graphene and Graphene Oxide: Synthesis, Properties and Applications. Advanced Materials, 22, 3906-3924.
https://doi.org/10.1002/adma.201001068
[17]  Lee, S., Bong, S., Ha, J., Kwak, M., Park, S.-K. and Piao, Y. (2015) Electrochemical Deposition of Bismuth on Activated Graphene-Nafion Composite for Anodic Stripping Voltammetric Determination of Trace Heavy Metals. Sensors and Actuators B, 215, 62-69.
https://doi.org/10.1016/j.snb.2015.03.032
[18]  Ke, Q. and Wang, J. (2016) Graphene-Based Materials for Supercapacitor Electrodes: A Review. Journal Materiomics, 2, 37-54.
https://doi.org/10.1016/j.jmat.2016.01.001
[19]  Tan, L.L., Chai, S.P. and Mohamed, A.R. (2012) Synthesis and Applications of Graphene-Based TiO2 Photocatalysts. Chemistry and Sustainability Chemistry, 5, 1868-1882.
https://doi.org/10.1002/cssc.201200480
[20]  Novoselav, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G. and Kim, K. (2012) A Roadmap for Graphene. Nature, 190, 192-200.
https://doi.org/10.1038/nature11458
[21]  Ratinac, K.R., Yang, W., Gooding, J.J., Thordarson, P. and Braet, F. (2011) Graphene and Related Materials in Electrochemical Sensing. Electroanalysis, 23, 803-826.
https://doi.org/10.1002/elan.201000545
[22]  Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J. and Braet, F. (2010) Carbon Nanomaterials in Biosensors: Should You Use Nanotube or Graphene? Angewandte Chemie International Edition, 49, 2114-2138.
https://doi.org/10.1002/anie.200903463
[23]  Shan, C., Yang, H., Song, J., Han, D., Ivaska, A. and Niu, L. (2009) Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Analytical Chemistry, 81, 2378-2382.
https://doi.org/10.1021/ac802193c
[24]  Kuila, T., Bose, S., Khanra, P., Mishra, A.K., Kim, N.H. and Lee, J.H. (2011) Recent Advances in Graphene-Based Biosensors. Biosensors and Bioelectronics, 26, 4637-4648.
https://doi.org/10.1016/j.bios.2011.05.039
[25]  Liu, Y., Dong, X. and Chen, P. (2012) Biological and Chemical Sensors Based on Graphene Materials. Chemical Society Reviews, 41, 2283-2307.
https://doi.org/10.1039/C1CS15270J
[26]  Choi, W., Lahiri, I., Seelaboyina, R. and Kang, Y.S. (2010) Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Material Science, 35, 52-71.
https://doi.org/10.1080/10408430903505036
[27]  Winnik, J. (2012) Searching for Structural Shifts in Science: Graphene R and D before and after Novoselov et al. (2004). Proceedings of the 17th International Conference on Science and Technology Indicators, Montréal, 1-12.
https://www.researchgate.net/publication/263580864
[28]  Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
https://doi.org/10.1126/science.1102896
[29]  Banhart, F., Kotakoski, J. and Krasheninnikov, A.V. (2011) Structural Defects in Graphene. American Chemical Society Nano, 5, 26-41.
https://doi.org/10.1021/nn102598m
[30]  Devadas, B., Rajkumar, M., Chen, S.M. and Saraswathi, R. (2012) Electrochemically Reduced Graphene Oxide, Neodymium Hexacyanoferrate Modified Electrode for the Electrochemical Detection of Paracetamol. International Journal of Electrochemical Science, 7, 3339-3349.
http://www.electrochemsci.org
[31]  Zhang, Y., Zhang, M., Wei, Q., Gao, Y., Guo, L., Al-Ghanim, K.A., Mahboob, S. and Zhang, X. (2016) An Easily Fabricated Electrochemical Sensor Based on a Graphene Modified Glassy Carbon Electrode for Determination of Octopamine and Tyramine. Sensors, 16, 535-548.
https://doi.org/10.3390/s16040535
[32]  Jian, J.M., Liu, Y.Y., Zhang, Y.L., Guo, X.S. and Cai, Q. (2013) Fast and Sensitive Detection of Pb2+ in Foods Using Disposable Screen-Printed Electrode Modified by Reduced Graphene Oxide. Sensors, 13, 13063-13075.
https://doi.org/10.3390/s131013063
[33]  Lesch, A., Cortes-Salazar, F., Prudent, M., Delobel, J., Rastgar, S., Lion, N., Tissot, J.D., Tacchini, P. and Girault, H. (2014) Large Scale Inkjet-Printing of Carbon Nanotubes Electrodes for Antioxidant Assays in Blood Bags. Journal of Electroanalytical Chemistry, 717-718, 61-68.
https://doi.org/10.1016/j.jelechem.2013.12.027
[34]  Singh, M., Haverinen, H.M., Dhagat, P. and Jabbour, G.E. (2010) Inkjet Printing-Process and Its Applications. Advanced Materials, 22, 673-685.
https://doi.org/10.1002/adma.200901141
[35]  Alves, A.P., Martins, J., Da Silva, H.P., Lourence, A., Fred, A. and Ferreira, H. (2014) Experimental Study and Evaluation of Paper-Based Inkjet Electrodes for ECG Signal Acquisition. Proceedings of the International Conference on Physiological Computing Systems, Vol. 1, 275-281.
https://doi.org/10.5220/0004720802750281
[36]  Lawes, S., Riese, A., Sun, Q., Cheng, N. and Sun, X. (2015) Printing Nanostructured Carbon for Energy Storage and Conversion Applications. Carbon, 92 150-176.
https://doi.org/10.1016/j.carbon.2015.04.008
[37]  Tortorich, R.P. and Choi, J.W. (2013) Inkjet Printing of Carbon Nanotubes. Nanomaterials, 3, 453-468.
https://doi.org/10.3390/nano3030453
[38]  Dong, S., Wang, Z., Asif, M., Wang, H., Yu, Y., Hu, Y., Liu, H. and Xiao, F. (2017) Inkjet Printing Synthesis of Sandwich Structure Ionic Liquid Carbon Nanotube-Graphene Film: Toward Disposable Electrode for Sensitive Heavy Metal Detection in Environmental Water Sample. Industrial and Engineering Chemistry, 56, 1696-1703.
https://doi.org/10.1021/acs.iecr.6b04251
[39]  Ardavan, Z., Gwan, H.L., Sung, J.A., Sunwoo, L., Nithin, M., Mauricio, T., Takuya, H., Catalin, R.P., James, H. and Nikhil, K. (2014) Effect of Defects on the Intrinsic Strength and Stiffness of Graphene. Nature Communication, 5, 3186.
https://doi.org/10.1038/ncomms4186
[40]  Yang, D.X., et al. (2009) Chemical Analysis of Graphene Oxide Film after Heat and Chemical Treatment by X-Ray Photoelectrons and Micro-Raman Spectroscopy. Carbon, 47, 145-152.
https://doi.org/10.1016/j.carbon.2008.09.045
[41]  Solis, F.P., Paredes, J.I., Villar-Rodil, S., Guardia, L., Fernandez-Merino, M.J., Dobrik, G., Biro, L.L.P., Martinez, A. and Tascon, J.M.D. (2011) Global and Local Oxidation Behavior of Reduced Graphene Oxide. Journal of Physical Chemistry C, 115, 7956-7966.
https://doi.org/10.1021/jp2003744
[42]  Zhang, G.H., et al. (2015) Electrochemistry at Highly Oriented Pyrolytic Graphite (HOPG): Lower Limit for the Kinetics of Outer-Sphere Redox Process and General Implications for Electron Transfer Models. Physical Chemistry Chemical Physics, 17, 11827-11838.
https://doi.org/10.1039/C5CP00383K
[43]  Nie, Z.H., Wang, H.M., Ma, Y., Kasim, J., Wu, Y.H. and Shen, Z.X. (2008) Tunable Stress and Controlled Thickness Modification in Graphene by Annealing. ACS Nano, 2, 1033-1039.
https://doi.org/10.1021/nn800031m
[44]  Gokus, T., Nair, R.R., Bonetti, A., Böhmler, M., Lombardo, A., Novoselav, K.S., Geim, A.K., Ferrari, A.C. and Hartschuh, A. (2009) Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano, 3, 3963-3968.
https://doi.org/10.1021/nn9012753
[45]  Ghoneim, M.M., Hassanein, A.M., Hammam, E. and Beltagi, A.M. (2000) Simultaneous Determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in Water by Differential Pulse Stripping Voltammetry at a Hanging Mercury Drop Electrode. Fresenius Journal of Analytical Chemistry, 367, 378-383.
https://doi.org/10.1007/s002160000410

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133