It is well established that classical electrodynamics, quantum electrodynamics (QED) as well as Quantum Field Theory (QFT) are grounded on Maxwell’s wave theory and on his equations, but it is much less well understood that they are not grounded on his initial interpretation of the relation between the E and B fields, but are rather grounded on Ludvig Lorenz’s interpretation of this relation, with which Maxwell disagreed. Maxwell considered that both fields had to mutually induce each other cyclically for the velocity of light to be maintained while Lorenz considered that both fields had to synchronously peak at maximum at the same time for this velocity to be maintained, both interpretations being equally consistent with the equations. Two recent breakthroughs however now allow confirming that Maxwell’s interpretation was correct because, contrary to the Lorenz interpretation, it allows to seamlessly reconcile Maxwell’s electromagnetic wave theory, so successfully applied at our macroscopic level, with the electromagnetic characteristics that apply at the subatomic level to localized electromagnetic photons and to all localized charged and massive elementary electromagnetic particles of which all atoms are made, and finally allows establishing a clear mechanics of electromagnetic photon emission and absorption by electrons during their interaction at the atomic level.
References
[1]
Rousseau, P. (1959) La Lumière. Collection “Que sais-je?”, Presses Universitaires de France.
[2]
Michaud, A. (2013) International Journal of Engineering Research and Development, 7, 32-39. http://ijerd.com/paper/vol7-issue4/G0704032039.pdf
[3]
Michaud, A. (2016) Journal of Physical Mathematics, 7, 153. https://www.gsjournal.net/Science-Journals/Research%20Papers- Mechanics%20/%20Electrodynamics/Download/5789
[4]
Michaud, A. (2018) Journal of Modern Physics, 9, 1052-1110. https://file.scirp.org/pdf/JMP_2018042716061246.pdf https://doi.org/10.4236/jmp.2018.95067
[5]
Cornille, P. (2003) Advanced Electromagnetism and Vacuum Physics. World Scientific Publishing, Singapore. https://doi.org/10.1142/5272
[6]
Sears, F., Zemansky, M. and Young, H. (1984) University Physics. 6th Edition, Addison Wesley, Boston.
[7]
Eisberg, R. and Resnick, R. (1985) Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. 2nd Edition, John Wiley & Sons, New York.
McDonald, K., et al. (1997) Physical Review Letters, 79, 1626. http://www.slac.stanford.edu/exp/e144 http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.79.1626
[14]
Michaud, A. (2019) Creative Education, 10, 353-406. http://www.scirp.org/pdf/CE_2019022016190620.pdf https://doi.org/10.4236/ce.2019.102028
[15]
Feynman, R.P., Leighton, R.B. and Sands, M. (1964) The Feynman Lectures on Physics. Addison-Wesley, Boston, Vol. II, 28.
[16]
Michaud, A. (2017) Journal of Astrophysics & Aerospace Technology, 5, 152. https://www.gsjournal.net/Science-Journals/Research%20Papers- Unification%20Theories/Download/6879
[17]
De Broglie, L. (1993) La physique nouvelle et les quanta, Flammarion, France 1937. 2nd Edition.
[18]
Michaud, A. (2000) On an Expanded Maxwellian Geometry of Space. Proceeding of Congress 2000, Fundamental Problems of Natural Sciences and Engineering, St Petersburg, Vol. 1, 291-310.
[19]
Marmet, P. (2003) International IFNA-ANS Journal, 9, 64-76. http://www.newtonphysics.on.ca/magnetic/index.html
[20]
Michaud, A. (2007) International IFNA-ANS Journal, 13, 123-140. https://www.gsjournal.net/Science-Journals/Research%20Papers- Relativity%20Theory/Download/2257
[21]
Michaud, A. (2013) International Journal of Engineering Research and Development, 6, 36-49. http://ijerd.com/paper/vol6-issue10/F06103649.pdf
[22]
Michaud, A. (2013) International Journal of Engineering Research and Development, 7, 29-53. http://www.ijerd.com/paper/vol7-issue9/E0709029053.pdf
[23]
Michaud, A. (2013) International Journal of Engineering Research and Development, 7, 1-8. http://www.ijerd.com/paper/vol7-issue7/A07070108.pdf
[24]
Michaud, A. (2017) Journal of Physical Mathematics, 8, 217. https://www.gsjournal.net/Science-Journals/Research%20Papers- Unification%20Theories/Download/6877
[25]
Bartels, J., Haidt, D. and Zichichi, A. (2000) The European Physical Journal C—Particles and Fields. Springer, Berlin.
[26]
Petkov, V. (2012) Space and Time—Minkowski’s Papers on Relativity. Translated by Fritz Lewertoff and Vesselin Petkov, Minkowski Institute Press, Montreal. https://www.amazon.com/Space-Time-Minkowskis-papers-relativity/dp/0987987143
[27]
Lorentz, H.A. (1904) Electromagnetic Phenomena in a System Moving with Any Velocity Smaller than That of Light. KNAW, Proceedings, Vol. 6, Amsterdam, 809-831. https://en.wikisource.org/wiki/Electromagnetic_phenomena
[28]
Einstein, A. (1934) Comment je vois le monde, Flammarion, France, 1958.
[29]
Abraham, M. (1902) Dynamik des Elektrons, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1902, S.20. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN252457811_1902&DMDI D=DMDLOG_0009
[30]
Poincaré, H. (1902) La science et l’hypothèse, France, Flammarion 1902, 1995 Edition.
[31]
Planck, M. (1906) Das Prinzip der Relativität und die Grundgleichungen der Mechanik. In: Verhandlungen Deutsche Physikalische Gesellschaft, No. 8, Vorgetragen in der Sitzung vom 23. März 1906, Friedrich Vieweg und Sohn, 136-141. https://archive.org/details/verhandlungende00goog/page/n179
[32]
Michaud, A. (2013) International Journal of Engineering Research and Development, 6, 1-10. http://www.gsjournal.net/Science-Journals/Essays/View/3197
[33]
Michaud, A. (2016) Journal of Physical Mathematics, 7, 177. https://www.gsjournal.net/Science-Journals/Research%20Papers- Mechanics%20/%20Electrodynamics/Download/6056
[34]
Kaufmann, W. (1903) über die “Elektromagnetische Masse” der Elektronen, Kgl. Gesellschaft der Wissenschaften Nachrichten, Mathem.-Phys. Klasse, 91-103. http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN252457811_1903&DMDI D=DMDLOG_0025
[35]
Michaud, A. (2013) International Journal of Engineering Research and Development, 8, 10-33. http://ijerd.com/paper/vol8-issue1/B08011033.pdf
[36]
Anderson, J.D., Laing, A., Lau, E.L., Liu, A.S., Nieto, M.M., et al. (1998) Indications from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration. http://arxiv.org/pdf/gr-qc/9808081v2.pdf https://doi.org/10.2172/353450
[37]
Nieto, M.M., Goldman, T., Anderson, J.D., Lau, E.L. and Perez-Mercader, J. (1994) Theoretical Motivation for Gravitation Experiments on Ultra Low Energy Antiprotons and Antihydrogen. http://arxiv.org/pdf/hep-ph/9412234.pdf
[38]
Anderson, J.D., Campbell, J.K. and Nieto, M.M. (2006) The Energy Transfer Process in Planetary Flybys. http://arxiv.org/pdf/astro-ph/0608087.pdf
[39]
Michaud, A. (2013) International Journal of Engineering Research and Development, 7, 50-66. http://www.ijerd.com/paper/vol7-issue5/H0705050066.pdf
[40]
National Institute of Standards and Technology (NIST). https://www.physics.nist.gov/cgi-bin/cuu/Value?h|search_for=universal_in
[41]
Lide, D.R. (2003) CRC Handbook of Chemistry and Physics. 84th Edition, CRC Press, New York.
[42]
Michaud, A. (2013) International Journal of Engineering Research and Development, 6, 7-11. http://ijerd.com/paper/vol6-issue12/B06120711.pdf
[43]
Michaud, A. (2013) International Journal of Engineering Research and Development, 6, 31-45. http://ijerd.com/paper/vol6-issue8/G06083145.pdf
[44]
Kühne, R.W. (1998) Remark on “Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration”. https://arxiv.org/pdf/gr-qc/9809075.pdf
[45]
Hafele, J.C. and Keating, R.E. (1972) Science, New Series, 177, 166-168. http://www.personal.psu.edu/rq9/HOW/Atomic_Clocks_Experiment.pdf https://doi.org/10.1126/science.177.4044.166
[46]
Michaud, A. (2013) International Journal of Engineering Research and Development, 6, 27-34. http://www.ijerd.com/paper/vol6-issue6/F06062734.pdf
[47]
Michaud, A. (2016) American Journal of Modern Physics, Special Issue: Insufficiency of Big Bang Cosmology, 5, 44-52. http://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.s.2016050401.17.pdf
[48]
Resnick, R. and Halliday, D. (1967) Physics. John Wyley & Sons, New York.
[49]
De Broglie, L. (1923) Comptes Rendus des Séances de l’Académie des Sciences, 177, 507-510. http://www.academie-sciences.fr/pdf/dossiers/Broglie/Broglie_pdf/CR1923_p507.pdf
[50]
Kaku, M. (1993) Quantum Field Theory. Oxford University Press, New York.
[51]
Michaud, A. (2013) International Journal of Engineering Research and Development, 7, 21-25. http://ijerd.com/paper/vol7-issue3/E0703021025.pdf
[52]
Michaud, A. (2013) International Journal of Engineering Research and Development, 7, 1-9. http://www.ijerd.com/paper/vol7-issue11/A07110109.pdf
[53]
Lowrie, W. (2007) Fundamentals of Geophysics. Second Edition, Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511807107
[54]
Auger, A. and Ouellet, C. (1998) Vibrations, ondes, optique et physique moderne. 2th édition. Le Griffon d’argile. http://collegialuniversitaire.groupemodulo.com/2252-vibrations- ondes-optique-et-physique-moderne-2e-edition-produit.html
[55]
Kotler, S., Akerman, N., Navon, N., Glickman, Y. and Ozeri, R. (2014) Nature Magazine, 510, 376-380. http://www.nature.com/articles/nature13403.epdf?referrer_access_token=yoC6RxrPyxwv QviChYrG0tRgN0jAjWel9jnR3ZoTv0PdPJ4geER1fKVR1YXH8GThqECstdb6e48mZm 0qQo2OMX_XYURkzBSUZCrxM8VipvnG8FofxB39P4lc-1UIKEO1