This paper computes the group and character table of Trimethylborane and Cyclohaxane. Results show that the groups are isomorphic to the wreath products C3wrC2 and C2wrC6with orders 81 and 384 and with 17 and 28 conjugacy classes respectively, where Cn denotes a cyclic group of order n.
References
[1]
Balasubramanian, K. (1984) Recent Applications of Group Theoretical Generators to Chemical Physics. Croatica Chemica Acta, 57, 1525-1552.
[2]
Hamadanian, M. and Ashrafi, A.R. (2003) The Full Non-Rigid Group Theory for Trimethylamine. IJMMS, 42, 2701-2706.
https://doi.org/10.1155/S0161171203205159
[3]
Darafsher, M.R., Ashrafi, A.R. and Darasher, A. (2005) Group Theory for Tetramethylethylene. Acta Chimica Slovenica, 52, 282-287.
[4]
Darafsher, M.R., Farjami, Y. and Ashrafi, A.R. (2005) Computing the Full Non-Rigid Group of Tetranitrocubane and Octanitrocubunae Using Wreath Product. Communications in Mathmatical and in Computer Chemistry, 54, 53-74.
[5]
Darafsher, M.R., Ashrafi, A.R. and Darafsher, A. (2007) Non-Rigid Group Theory for 2,3-Dimethybutane. MATCH Communications in Mathematical and in Computer Chemistry, 58, 47-56.
[6]
Moghani, A., Sedeh, S.N. and Sorouhesh, M.R. (2010) The Fujita Combinatorial Enumeration for the Non-Rigid Group of 2,4-Dimethylbenzene. Journal of the Serbian Chemical Society, 75, 91-99. https://doi.org/10.2298/JSC1001091M
[7]
Moghadam, M.E., Karimi, T. and Algar, S. (2012) Group Theory for Non-Rigid Methyl Borane Derivatives. 22nd Iranian Algebra Seminar, Hakim Sabzevari University, Iran, 314-317.
[8]
Moghadam, M.E., Karimi, T. and Farrokhi, M.D. (2012) Full Non-Rigid Group Theory and Symmetry of Some Diborane Deriva-tives. International Journal of Physical Sciences, 7, 73-80. https://doi.org/10.5897/IJPS11.1646
[9]
Dixon, J.D. and Mortimer, B. (1996) Permutation Groups. Springer-Verlag, Berlin, New York. https://doi.org/10.1007/978-1-4612-0731-3
[10]
The GAP Group (2018) GAP-Reference Manual, Release 4.8.10. 23 June 2019.
https://www.gap-system.org