全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Intrinsic Bio-Enhancer Entities of Fagonia cretica for Synthesis of Silver Nanoparticles Involves Anti-Urease, Anti-Oxidant and Anti-Tyosinase Activity

DOI: 10.4236/abb.2019.1012032, PP. 455-468

Keywords: Bioactivity, Fagonia cretica, Nanoparticles, Enzymes Assay, Bio Reducing Agent

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective: Evaluating the bio-reducing activity and various potential, annotates the biological entitties of Fagonia cretica. Method: By fractionating the crude extract with different ethanol-water fraction mixture. This substantiates the reduction potential for the biological synthesis of AgNPs, its antioxidant, anti-urease and anti-Tyrosinase activity. Results: UV-visible spectra confirm the bio-reducing potential for Ag NPs with the optimized 50% ethanol-water fraction mixture. Transmission electron microscopy (TEM) confirmed the round shaped AgNPs with an average size of 16 nm in optimized 50% fraction mixture. Further evaluating Ethanol-water fraction with 90% and 70% of plant extract showed more potentials for Anti-Tyrosinase and Anti-urease activity. Moreover, diluted 30% fraction exhibits two folds higher Anti-oxidant and Anti urease activity. Conclusion: Overall, this work showed that 50% Ethanol-water fraction has potentially active molecules (among all fractions) primarily involved in bio-reducing potential of Ag NPs and enzymatic assay while 90% mixture proved to be least active. This study suggested electing the optimum mixture fraction of 50% ethanol-water in order to screen the bioactive compounds and to inculcate their activity status for clinical trials.

References

[1]  Hasan, M., Ullah, I., et al. (2018) Biological Entities as Chemical Reactors for Synthesis of Nanomaterials: Progress, Challenges and Future Perspective. Materials Today Chemistry, 8, 13-28.
https://doi.org/10.1016/j.mtchem.2018.02.003
[2]  Hasan, M., Teng, Z.Q., Iqbal, J., Awan, U., et al. (2013) Assessment of Bioreducing and Stabilizing Potential of Dragon’s Blood (Dracaena Cochinchinensis, Lour. S. C. Chen) Resin Extract in Synthesis of Silver Nanoparticles. Nanoscience and Nanotechnology Letters, 5, 780-784.
https://doi.org/10.1166/nnl.2013.1600
[3]  Dang, H., Hasan, M., et al. (2014) Luteolin-Loaded Solid Lipid Nanoparticles Synthesis, Characterization, & Improvement of Bioavailability, Pharmacokinetics in Vitro and Vivo Studies. Journal of Nanoparticle Research, 16, Article ID: 2347.
[4]  Hasan, M., Iqbal, J., Awan, U., Xin, N., Dang, H., et al. (2015) LX Loaded Nanoliposomes Synthesis, Characterization and Cellular Uptake Studies in H2O2 Stressed SH-SY5Y Cells. Journal of Nanoscience and Nanotechnology, 15, 1320-1326.
[5]  Hasan, M., Mustafa, G., Iqbal, J., Ashfaq, M. and Mahmood, N. (2018) Quantitative Proteomic Analysis of HeLa Cells in Response to Biocompatible Fe2C@C Nanoparticles: 16O/18O-Labelling & HPLC-ESI-Orbit-Trap Profiling Approach. Toxicological Research, 7, 84-92.
https://doi.org/10.1039/C7TX00248C
[6]  Hasan, M., et al. (2017) Biocompatibility of Iron Carbide and Detection of Metals Ions Signaling Proteomic Analysis via HPLC/ESI-Orbitrap. Nano Research, 10, 1912-1923.
https://doi.org/10.1007/s12274-016-1375-4
[7]  Akbar, S., et al. (2018) Raphanus Sativus Mediated Synthesis, Characterization and Biological Evaluation of Zinc Oxide Nanoparticles. Nanoscience and Nanotechnology Letters, 9, 2005-2012.
https://doi.org/10.1166/nnl.2017.2550
[8]  Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D.G. and Lightfoot, D.A. (2017) Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants, 6, 23-42.
https://doi.org/10.3390/plants6040042
[9]  Qureshi, H., Asif, S., Ahmed, H., Al-Kahtani, H.A. and Hayat, K. (2016) Chemical Composition and Medicinal Significance of Fagonia cretica: A Review. Natural Product Research, 30, 625-639.
https://doi.org/10.1080/14786419.2015.1036268
[10]  Farheen, R., Mahmood, I. and Parveen, R. (2017) Review on Medicinal and Bioactive Role of Genus Fagonia. FUUAST Journal of Biology, 7, 33-36.
[11]  Naeem, K., Yawar, W., Muhammad, B. and Rehana, I. (2014) Assessment of Macronutrients and Heavy Metals in Fgoniacretica Linn of Pakistan by Atomic Spectroscopy. Bulletin of the Chemical Society of Ethiopia, 28, 177-185.
https://doi.org/10.4314/bcse.v28i2.2
[12]  Nazir, I., Ur Rahman, N., Alvi, Z., Hafizur Rahman, M., et al. (2017) Antidiabetic Activities of an LC/MS Fingerprinted Aqueous Extract of Fagonia cretica L. in Preclinical Models. Planta Medica, 83, 1141-1148.
https://doi.org/10.1055/s-0043-107616
[13]  Hussain, A., Zia, M. and Mirza, B. (2007) Cytotoxic and Antitumor Potential of Fagonia cretica L. Turkish Journal of Biology, 31, 19-24.
[14]  Chopra, R., Chopra, I., et al. (1982) Indigenous Drugs of India. 2nd Edition, Academic Publishers, Calcutta.
[15]  Marwat, S.K., Fazal-Ur-Rehman and Khan, I.U. (2012) Tracing the Useful Ethnophytomedicinal Recipes of Angiosperms Used against Jaundice and Hepatitis in Indo-Pak Subcontinent. World Applied Sciences Journal, 18, 1243-1252.
[16]  Iqbal, P., Ahmed, D. and Asghar, M.N. (2014) A Comparative in Vitro Antioxidant Potential Profile of Extracts from Different Parts of Fagonia cretica. Asian Pacific Journal of Tropical Medicine, 7, S473-S480.
https://doi.org/10.1016/S1995-7645(14)60277-7
[17]  Iqbal, H., Sher, Z. and Khan, Z.U. (2011) Medicinal Plants from Salt Range Pind Dadan Khan, District Jhelum, Punjab, Pakistan. Journal of Medicinal Plants Research, 5, 2157-2168.
[18]  Badshah, L. and Hussain, F. (2011) People Preferences and Use of Local Medicinal Flora in District Tank, Pakistan. Journal of Medicinal Plants Research, 5, 22-29.
[19]  Satpute, R., Bhattacharya, R., Kashyap, R.S., et al. (2012) Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Unduced in PC12 Cells. Iranian Journal of Pharmaceutical Research, 11, 303-313.
[20]  Iqbal, P., Ahmed, D. and Asghar, M.N. (2014) A Comparative in Vitro Antioxidant Potential Profile of Extracts from Different Parts of Fagonia cretica. Asian Pacific Journal of Tropical Medicine, 7, S473-S480.
https://doi.org/10.1016/S1995-7645(14)60277-7
[21]  Rawal, A.K., Nath, D.K., Yadav, N., Pande, S., Meshram, S.U. and Biswas, S.K. (2009) Rubiacordifolia, Fagonia cretica Linn and Tinospora cordifolia Exert Anti-Inflammatory Properties by Modulating Platelet Aggregation and VEGF, COX-2 and VCAM Gene Expressions in Rat Hippocampal Slices Subjected to Ischemic Reperfusion Injury. International Journal of Applied Research in Natural Products, 2, 19-26.
[22]  Ran, Y., Wang, R., Lin, F., Hasan, M., Jia, Q., Tang, B., et al. (2014) Radio Protective Effects of Dragon’s Blood and Its Extract against Gamma Irradiation in Mouse Bone Marrow Cells. Physics in Medicine, 30, 427-431.
https://doi.org/10.1016/j.ejmp.2013.12.001
[23]  Deghbar, N., Mezioug, D., Kahina, T., Medjdoub, Y.M., et al. (2019) Antihydatic and Immunomodulatory Effects of Algerian Propolisethanolic Extract: In Vitro and in Vivo Study. Asian Pacific Journal of Tropical Medicine, 12, 106-116.
[24]  Ran, Y., Wang, R., Gao, Q., Jia, Q., Hasan, M., Awan, M.U., et al. (2014) Dragon’s Blood and Its Extracts Attenuate Radiation-Induced Oxidative Stress in Mice. Journal of Radiation Research, 55, 699-706.
https://doi.org/10.1093/jrr/rru013
[25]  Ran, Y., Xu, B., Wang, R., Gao, Q., Jia, Q., Hasan, M., et al. (2016) Dragon’s Blood Extracts Reduce Radiation-Induced Peripheral Blood Injury and Protects Human Megakaryocyte Cells from GM-CSF Withdraw-Induced Apoptosis. Physica Medica, 32, 84-93.
[26]  Mahmood, S., Fatima, T., Zulfaqar, H., Saher, R., et al. (2017) Meta-Analysis of Dragon’s Blood Resin Extract as Radio-Protective Agent. Journal of Coastal Life Medicine, 5, 409-416.
[27]  Touzani, S., Al-Waili, N., El Menyiy, N., Filipic, B., et al. (2018) Chemical Analysis and Antioxidant Content of Various Propolis Samples Collected from Different Regions and Their Impact on Antimicrobial Activities. Asian Pacific Journal of Tropical Medicine, 11, 436-442.
[28]  Uddin, Md.S., Hossain, Md.S., Al Mamun, A., et al. (2018) Phytochemical Analysis and Antioxidant Profile of Methanolic Extract of Seed, Pulp and Peel of Baccaurea ramiflora Lour. Asian Pacific Journal of Tropical Medicine, 11, 443-450.
[29]  Xin, N., Hasan, M., Li, W. and Li, Y. (2014) Juglans mandshurica Maxim Extracts Exhibit Antitumor Activity on HeLa Cells in Vitro. Molecular Medicine Reports, 9, 1313-1318.
https://doi.org/10.3892/mmr.2014.1979
[30]  Ozer, O., Berkay, M. and Bijan, K. (2007) Antityrosinase Activity of Some Plant Extracts and Formulations Containing Ellagic Acid. Pharmaceutical Biology, 45, 519-524.
https://doi.org/10.1080/13880200701446746
[31]  Mobley, H. and Hausinger, R. (1989) Microbial Ureases: Significance, Regulation, and Molecular Characterization. Microbiological Reviews, 53, 85-108.
[32]  Iqbal, H. and Sher, Z. (2011) Medicinal Plants from Salt Range Pind Dadan Khan, District Jhelum, Punjab, Pakistan. Journal of Medicinal Plant Research, 5, 2157-2168.
[33]  Cáceres, A., Almeda, F., et al. (2018) Anti-Urease Activity of Native Species of Genus Piper from Guatemala with Potential Application in Infection Control. International Journal of Phytocosmetics and Natural Ingredients, 5, 2.
https://doi.org/10.15171/ijpni.2018.02
[34]  Azmi, N., Hashim, P., Hashim, D.M., Halimoon, N. and Majid, N. (2014) Anti-Elastase, Anti-Tyrosinase and Matrix Metalloproteinase-1 Inhibitory Activity of Earthworm Extracts as Potential New Anti-Aging Agent. Asian Pacific Journal of Tropical Medicine, 4, 348-352.
https://doi.org/10.12980/APJTB.4.2014C1166
[35]  Baurin, N., Arnoult, E., Scior, T., Do, Q. and Bernard, P. (2002) Preliminary Screening of Some Tropical Plants for Antityrosinase Activity. Journal of Ethnopharmacology, 82, 155-158.
https://doi.org/10.1016/S0378-8741(02)00174-5
[36]  Lateef, M., Iqbal, L., Fatima, N., Siddiqui, K., Afza, N., et al. (2012) Evaluation of Antioxidant and Urease Imbibition Activities of Roots of Glycyrrihza glabra. Pakistan Journal of Pharmaceutical Sciences, 25, 99-102.
[37]  Saadullah, M., Chaudary, B.A. and Uzair, M. (2016) Antioxidant Phytotoxic and Antiurease Activities and Total Phenolic and Flavonoid Contents of Conocorpus lancifolius. Tropical Journal of Pharmaceutical Research, 15, 555-561.
https://doi.org/10.4314/tjpr.v15i3.17
[38]  Nile, S.H., Keum, Y.S., Nile, A.S., Jalde, S.S. and Patel, R.V. (2017) Antioxidant Anti-Inflammatory and Enzyme Inhibitory Activity of Natural Plant Flavonoid and Their Synthesised Derivatives. Journal of Biochemical and Molecular Toxicology, 32, e22002.
https://doi.org/10.1002/jbt.22002
[39]  Zengin, G., Uysal, S., Ceylan, R. and Aktumsek, A. (2015) Phenolic Constituents Antioxidative and Tyrosinase Inhibitory Activity of Ornithogalum narbonense L. from Turkey: A Phytochemical Study. Industrial Crops and Products, 70, 1-6.
https://doi.org/10.1016/j.indcrop.2015.03.012
[40]  Athipornchai, A. and Jullapo, A. (2018) Tyrosinase Inhibitory and Antioxidant Activities of Orchid (Dendrobium spp.). South African Journal of Botany, 119, 188-192.
https://doi.org/10.1016/j.sajb.2018.09.003

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133