全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Troponin T from the Japanese Pearl Oyster Pinctada fucata: Molecular Cloning, Tissue Distribution, Gene Structure, and Interaction Analysis with Tropomyosin

DOI: 10.4236/ajmb.2020.101006, PP. 61-73

Keywords: Adductor Muscle, Catch Contraction, Pinctada fucata, Troponin T, Tropomyosin

Full-Text   Cite this paper   Add to My Lib

Abstract:

Troponin (Tn) is composed of three subunits (TnI, TnC and TnT) that bind Ca2+ and regulate striated muscle contraction in vertebrates. TnT’s function has been extensively described in vertebrates, but its role has been obscure in molluscan muscles. Our previous work indicated that the TnC and TnI subunits work in adductor phasic muscle, but not in catch muscle. Here, we have characterized TnT from the Japanese bivalve pearl oyster Pinctada fucata to start to explain the function of Tn in molluscan muscle contraction. We determined the primary structure of the full-length TnT protein from the P. fucata adductor muscle (Pifuc-TnT), and found that it is composed of 316 amino acid residues with a predicted molecular mass of 37.4 kDa. Multiple sequence alignment showed that Pifuc-TnT has an extension of >60 residues at the C-terminus that are not present in vertebrate TnTs, including known TnTs from other mollusks. Pifuc-TnT gene structure predictions using Splign alignment of the cDNA generated in this study and genome sequences indicated that Pifuc-TnT consists of 13 exons. Start and stop codons are located in exons 2 and 12, respectively. Quantitative real-time PCR revealed that the Pifuc-TnT gene was predominantly expressed in adductor phasic muscle, weakly in adductor catch muscle, slightly in gill, and not at all in mantle and foot. These findings suggest that TnT plays a regulatory role in adductor phasic muscle contraction, but not in catch contraction. Isothermal titration calorimetry revealed that unlike vertebrate TnTs, Pifuc-TnT does not interact with P. fucata tropomyosin-1 nor with tropomyosin-2. These findings in P. fucata imply that Tn functions differently in molluscan muscle than it does in vertebrates.

References

[1]  Funabara, D., Kanoh, S., Siegman, M.J., Butler, T.M., Hartshorne, D.J. and Watabe, S. (2005) Twitchin as a Regulator of Catch Contraction in Molluscan Smooth Muscle. Journal of Muscle Research and Cell Motility, 26, 455-460.
https://doi.org/10.1007/s10974-005-9029-2
[2]  Funabara, D., Hamamoto, C., Yamamoto, K., Inoue, A., Ueda, M., Osawa, R., Kanoh, S., Hartshorne, D.J., Suzuki, S. and Watabe, S. (2007) Unphosphorylated Twitchin Forms a Complex with Actin and Myosin That May Contribute to Tension Maintenance in Catch. Journal of Experimental Biology, 210, 4399-4410.
https://doi.org/10.1242/jeb.008722
[3]  Funabara, D., Osawa, R., Ueda, M., Kanoh, S., Hartshorne, D.J. and Watabe, S. (2009) Myosin Loop 2 Is Involved in the Formation of a Trimeric Complex of Twitchin, Actin, and Myosin. The Journal of Biological Chemistry, 284, 18015-18020.
https://doi.org/10.1074/jbc.M109.016485
[4]  Butler, T.M., Mooers, S.U., Narayan, S.R. and Siegman, M.J. (2010) The N-Terminal Region of Twitchin Binds Thick and Thin Contractile Filaments: Redundant Mechanisms of Catch Force Maintenance. The Journal of Biological Chemistry, 285, 40654-40665.
https://doi.org/10.1074/jbc.M110.166041
[5]  Leavis, P.C., Gergely, J. and Szent-Gyorgyi, A.G. (1984) Thin Filament Proteins and Thin Filament-Linked Regulation of Vertebrate Muscle Contraction. Critical Reviews in Biochemistry, 16, 235-305.
https://doi.org/10.3109/10409238409108717
[6]  Ohtsuki, I., Maruyama, K. and Ebashi, S. (1986) Regulatory and Cytoskeletal Proteins of Vertebrate Skeletal Muscle. Advances in Protein Chemistry, 38, 1-67.
https://doi.org/10.1016/S0065-3233(08)60525-2
[7]  Zot, A.S. and Potter, J.D. (1987) Structural Aspects of Troponin-Tropomyosin Regulation of Skeletal Muscle Contraction. Annual Review of Biophysics and Biophysical Chemistry, 16, 535-559.
https://doi.org/10.1146/annurev.bb.16.060187.002535
[8]  Farah, C.S. and Reinach, F.C. (1995) The Troponin Complex and Regulation of Muscle Contraction. FASEB Journal, 9, 755-767.
https://doi.org/10.1096/fasebj.9.9.7601340
[9]  Nagai, K. (2013) A History of the Cultured Pearl Industry. Zoological Science, 30, 783-793.
https://doi.org/10.2108/zsj.30.783
[10]  Takeuchi, T., Kawashima, T., Koyanagi, R., Gyoja, F., Tanaka, M., Ikuta, T., Shoguchi, E., Fujiwara, M., Shinzato, C., Hisata, K., Fujie, M., Usami, T., Nagai, K., Maeyama, K., Okamoto, K., Aoki, H., Ishikawa, T., Masaoka, T., Fujiwara, A., Endo, K., Endo, H., Nagasawa, H., Kinoshita, S., Asakawa, S., Watabe, S. and Satoh, N. (2012) Draft Genome of the Pearl Oyster Pinctada fucata: A Platform for Understanding Bivalve Biology. DNA Research, 19, 117-130.
https://doi.org/10.1093/dnares/dss005
[11]  Funabara, D., Watanabe, D., Satoh, N. and Kanoh, S. (2013) Genome-Wide Survey of Genes Encoding Muscle Proteins in the Pearl Oyster, Pinctada fucata. Zoological Science, 30, 817-825.
https://doi.org/10.2108/zsj.30.817
[12]  Takeuchi, T., Koyanagi, R., Gyoja, F., Kanda, M., Hisata, K., Fujie, M., Goto, H., Yamasaki, S., Nagai, K., Morino, Y., Miyamoto, H., Endo, K., Endo, H., Nagasawa, H., Kinoshita, S., Asakawa, S., Watabe, S., Satoh, N. and Kawashima, T. (2016) Bivalve-Specific Gene Expansion in the Pearl Oyster Genome: Implications of Adaptation to a Sessile Lifestyle. Zoological Letters, 2, 3.
https://doi.org/10.1186/s40851-016-0039-2
[13]  Funabara, D., Ishikawa, D., Urakawa, Y. and Kanoh, S. (2018) Ca2+-Induced Conformational Change of Troponin C from the Japanese Pearl Oyster, Pinctada fucata. American Journal of Molecular Biology, 8, 205-214.
https://doi.org/10.4236/ajmb.2018.84018
[14]  Funabara, D., Urakawa, Y. and Kanoh, S. (2018) Molecular Cloning and Tissue Distribution of Troponin C from the Japanese Pearl Oyster, Pinctada fucata. American Journal of Molecular Biology, 8, 166-177.
https://doi.org/10.4236/ajmb.2018.83014
[15]  Funabara, D., Urakawa, Y. and Kanoh, S. (2019) Molecular Cloning and Tissue Distribution of Troponin I from the Japanese Pearl Oyster, Pinctada fucata. American Journal of Molecular Biology, 9, 29-40.
https://doi.org/10.4236/ajmb.2019.92003
[16]  Nishita, K., Tanaka, H. and Ojima, T. (1994) Amino Acid Sequence of Troponin C from Scallop Striated Adductor Muscle. Journal of Biological Chemistry, 269, 3464-3468.
[17]  Ojima, T., Tanaka, H. and Nishita, K. (1994) Cloning and Sequence of a cDNA Encoding Akazara Scallop Troponin C. Archives of Biochemistry and Biophysics, 311, 272-276.
https://doi.org/10.1006/abbi.1994.1237
[18]  Ojima, T., Ohta, T. and Nishita, K. (2001) Amino Acid Sequence of Squid Troponin C. Comparative Biochemistry and Physiology Part B, 129, 787-796.
https://doi.org/10.1016/S1096-4959(01)00397-9
[19]  Tanaka, H., Ojima, T. and Nishita, K. (1998) Amino Acid Sequence of Troponin-I from Akazara Scallop Striated Adductor Muscle. Journal of Biochemistry, 124, 304-310.
https://doi.org/10.1093/oxfordjournals.jbchem.a022112
[20]  Tanaka, H., Takeya, Y., Doi, T., Yumoto, F., Tanokura, M., Ohtsuki, I., Nishita, K. and Ojima, T. (2005) Comparative Studies on the Functional Roles of N- and C-Terminal Regions of Molluskan and Vertebrate Troponin-I. The FEBS Journal, 272, 4475-4486.
https://doi.org/10.1111/j.1742-4658.2005.04866.x
[21]  Layland, J., Solaro, R.J. and Shah, A.M. (2005) Regulation of Cardiac Contractile Function by Troponin I Phosphorylation. Cardiovascular Research, 66, 12-21.
https://doi.org/10.1016/j.cardiores.2004.12.022
[22]  Perry, S.V. (1998) Troponin T: Genetics, Properties and Function. Journal of Muscle Research and Cell Motility, 19, 575-602.
https://doi.org/10.1023/A:1005397501968
[23]  Pearlstone, J.R., Carpenter, M.R., Johnson, P. and Smillie, L.B. (1976) Amino-Acid Sequence of Tropomyosin-Binding Component of Rabbit Skeletal Muscle Troponin. Proceedings of the National Academy of Sciences of the United States of America, 73, 1902-1906.
https://doi.org/10.1073/pnas.73.6.1902
[24]  Funabara, D., Ohta, A., Sueyoshi, J. and Kanoh, S. (2019) Tropomyosin Isoform Expression in the Adductor Muscle of the Japanese Pearl Oyster, Pinctada fucata. American Journal of Molecular Biology, 9, 16-27.
https://doi.org/10.4236/ajmb.2019.91002
[25]  Chomczynski, P. (1993) A Reagent for the Single-Step Simultaneous Isolation of RNA, DNA and Proteins from Cell and Tissue Samples. BioTechniques, 15, 532-537.
[26]  Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007) Clustal W and Clustal X Version 2.0. Bioinformatics, 23, 2947-2948.
https://doi.org/10.1093/bioinformatics/btm404
[27]  Kapustin, Y., Souvorov, A., Tatusova, T. and Lipman, D. (2008) Splign: Algorithms for Computing Spliced Alignments with Identification of Paralogs. Biology Direct, 3, 20.
https://doi.org/10.1186/1745-6150-3-20
[28]  Studier, F.W. (2005) Protein Production by Auto-Induction in High-Density Shaking Cultures. Protein Expression and Purification, 41, 207-234.
https://doi.org/10.1016/j.pep.2005.01.016
[29]  Inoue, A., Ojima, T. and Nishita, K. (1996) Cloning and Sequencing of a cDNA for Akazara Scallop Troponin T. Journal of Biochemistry, 120, 834-837.
https://doi.org/10.1093/oxfordjournals.jbchem.a021487
[30]  Wei, B. and Jin, J.-P. (2011) Troponin T Isoforms and Posttranscriptional Modifications: Evolution, Regulation and Function. Archives of Biochemistry and Biophysics, 505, 144-154.
https://doi.org/10.1016/j.abb.2010.10.013
[31]  Funabara, D., Osakabe, Y. and Kanoh, S. (2019) Calponin Isoform Expression in the Japanese Pearl Oyster, Pinctada fucata. American Journal of Molecular Biology, 9, 154-172.
https://doi.org/10.4236/ajmb.2019.94012

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133