全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biogenic Synthesis of Silver Nanoparticles Using Guava (Psidium guajava) Leaf Extract and Its Larvicidal Action against Anopheles gambiae

DOI: 10.4236/jbnb.2020.111004, PP. 49-66

Keywords: Vector Control, Anopheles gambiae, Silver Nanoparticles, Psidium guajava

Full-Text   Cite this paper   Add to My Lib

Abstract:

The progress in the field of nanotechnology has contributed to the development of tools for combating the most critical problems in developing countries. The requirements that such tools should meet are low-cost and resource settings, environmental protection, ease of use, and availability. The use of plant properties for the generation of nanoparticles (NPs), which serve as bioinsecticides to combat the plasticity and resistance of mosquitoes and parasites, is considered possible. Here, we report for the first time the larvicidal activity of silver (Ag) NPs (AgNPs) synthesized from Psidium guajava (P. guajava) extract, which targets the 4th instar larvae of Anopheles gambiae. Concentrations of AgNPs between 0 and 200 ppm were used and their LC50 at 24 h and 48 h were determined as 19.55 ppm and 8.737 ppm, respectively. The AgNPs were stable and highly effective against the larvae of A. gambiae and thereby we anticipate that they can be used to combat vector-borne diseases in developing countries.

References

[1]  Ponraj, G.K., Kumar, R. and Saravanan, V. (2017) Biosynthesis of Silver Nanoparticles from Allium cepa Leaf Extract and Its Larvicidal Activity against Culex quinquefasciatus and Aedes aegypti. International Journal of Biosciences and Nanosciences, 4, 75-82.
[2]  Prusty, A.K., Kajol, S.J., Datta, R.S. and Mishra, P.P. (2016) Mosquito Larvicidal Activity of Biogenically Synthesized Silver Nanoparticles Using Aponogeton natans Leaf Extract. Indo American Journal of Pharmaceutical Research, 6, 5401-5406.
[3]  Benelli, G., Caselli, A. and Canale, A. (2017) Nanoparticles for Mosquito Control: Challenges and Constraints. Journal of King Saud University—Science, 29, 424-435.
https://doi.org/10.1016/j.jksus.2016.08.006
[4]  White, N.J. (2015) Declining Malaria Transmission and Pregnancy Outcomes in Southern Mozambique. New England Journal of Medicine, 373, 1670-1671.
https://doi.org/10.1056/NEJMe1511278
[5]  WHO (2018) World Malaria Report. The World Health Organization, Geneva.
http://www.who.int
[6]  Benelli, G. and Mehlhorn, H. (2016) Declining Malaria, Rising Dengue and Zika Virus: Insights for Mosquito Vector Control. Parasitology Research, 115, 1747-1754.
https://doi.org/10.1007/s00436-016-4971-z
[7]  Pino, P., Caldelari, R., Mukherjee, B., Vahokoski, J., Klages, N., Maco, B., Collins, C.R., Blackman, M.J., Kursula, I., Heussler, V., Brochet, M. and Soldati-Favre, D. (2017) A Multistage Antimalarial Targets the Plasmepsins IX and X Essential for Invasion and Egress. Science, 358, 522-528.
https://doi.org/10.1126/science.aaf8675
[8]  Bass, C., Williamson, M.S., Wilding, C.S., Donnelly, M.J. and Field, M.L. (2007) Identification of the Main Malaria Vectors in the Anopheles Gambiae Species Complex Using a TaqMan Real-Time PCR Assay. Malaria Journal, 6, Article No. 155.
https://doi.org/10.1186/1475-2875-6-155
[9]  Chrustek, A., Hołynska-Iwan, I., Dziembowska, I., Bogusiewicz, J., Wróblewski, M., Cwynar, A. and Olszewska-Słonina, D. (2018) Current Research on the Safety of Pyrethroids Used as Insecticides. Medicine, 54, 61.
https://doi.org/10.3390/medicina54040061
[10]  Mendonca, P.M., Lima, M.G., Albuquerque, L.R.M., Carvalho, M.G. and Queiroz, M.M.C. (2011) Effects of Latex from “Amapazeiro” (Apocynaceae) on Blowfly Chrysomya megacephala (Diptera: Calliphoridae) Post-Embryonic Development. Veterinary Parasitology, 178, 379-382.
https://doi.org/10.1016/j.vetpar.2011.01.002
[11]  Arjunan, N.K., Murugan, K., Rejeeth, C., Madhiyazhagan, P. and Barnard, D.R. (2012) Green Synthesis of Silver Nanoparticles for the Control of Mosquito Vectors of Malaria, Filariasis, and Dengue. Vector Borne and Zoonotic Diseases, 12, 262-268.
https://doi.org/10.1089/vbz.2011.0661
[12]  Barik, T.K., Kamaraju, R. and Gowswami, A. (2012) Silica Nanoparticle: A Potential New Insecticide for Mosquito Vector Control. Parasitology Research, 111, 1075-1083.
https://doi.org/10.1007/s00436-012-2934-6
[13]  Rahman, S., Biswas, S.K., Barman, N.C. and Ferdous, T. (2016) Plant Extract as Selective Pesticide for Integrated Pest Management. Biotechnology Research Journal, 2, 6-10.
[14]  Arnason, J.T., Sims, S.R. and Scott, I.M. (2012) Natural Products from Plants as Insecticides. Phytochemistry and Pharmacognosy.
http://www.eolss.net/Sample-Chapters/C06/E6-151-13.pdf
[15]  Isman, M.B. (2000) Plant Essential Oils for Pest and Disease Management. Crop Protection, 19, 603-608.
https://doi.org/10.1016/S0261-2194(00)00079-X
[16]  Escobar, L.E., Romero-Alvarez, D., Leon, R., Lepe-Lopez, M.A., Craft, M.E., Borbor-Cordova, M.J. and Svenning, J.-C. (2016) Declining Prevalence of Disease Vectors under Climate Change. Scientific Reports, 6, Article No. 39150.
https://doi.org/10.1038/srep39150
[17]  Eya’ane Meva, F., Ntoumba, A.A., Belle Ebanda Kedi, P., Tchoumbi, E.E., Schmitz, A., Schmolke, L., Klopotowski, M., Moll, B., Kökҫam-Demir, ü., Mpondo Mpondo, E.A., Lehman, L.G. and Janiak, C. (2019) Silver and Palladium Nanoparticles Produced Using a Plant Extract as Reducing Agent, Stabilized with an Ionic Liquid: Sizing by X-Ray Powder Diffraction and Dynamic Light Scattering. Journal of Material Research and Technology, 8, 1991-2000.
https://doi.org/10.1016/j.jmrt.2018.12.017
[18]  Kumar, S., Viney, L. and Deepti, P. (2015) Green Synthesis of Therapeutic Nanoparticles: An Expanding Horizon. Nanomedicine, 10, 2451-2471.
https://doi.org/10.2217/nnm.15.112
[19]  Daswani, P.G., Gholkar, M.S. and Birdi, T.J. (2017) Psidium guajava: A Single Plant for Multiple Health Problems of Rural Indian Population. Pharmacognosie Review, 11, 167-174.
https://doi.org/10.4103/phrev.phrev_17_17
[20]  Almeida, C.E., Karnikowski, M.G.O., Foleto, R. and Baldisserotto, B. (1995) Analysis of Antidiarrhoeic Effect of Plants Used in Popular Medicine. Revista de Saude Publica, 29, 428-433.
https://doi.org/10.1590/S0034-89101995000600002
[21]  Joseph, B. and Priya, R.M. (2011) Phytochemical and Biopharmaceutical Aspects of Psidium guajava (L.) Essential Oil: A Review. Research Journal of Medicinal Plants, 5, 432-442.
https://doi.org/10.3923/rjmp.2011.432.442
[22]  Nantitanon, W. and Okonogi, S. (2012) Comparison of Antioxidant Activity of Compounds Isolated from Guava Leaves and a Stability Study of the Most Active Compound. Drug Discovery and Therapeutics, 6, 38-43.
https://doi.org/10.5582/ddt.2012.v6.1.38
[23]  Díaz-de-Cerio, E., Verardo, V., Gómez-Caravaca, A.M., Fernández-Gutiérrez, A. and Segura-Carretero, A. (2015) Determination of Polar Compounds in Guava Leaves Infusions and Ultrasound Aqueous Extract by HPLC-ESI-MS. Journal of Chemistry, 2015, Article ID: 250919.
https://doi.org/10.1155/2015/250919
[24]  Shruthi, S.D., Roshan, A., Timilsina, S.S. and Sunita, S. (2013) A Review on the Medical Plant Psidium guajava Linn. (Myetaceae). Journal of Drug Delivery and Therapeutics, 3, 162-168.
https://doi.org/10.22270/jddt.v3i2.404
[25]  Rwang, P.G., Effoim, O.E., Merc, K.P. and Etokakpan, A.M. (2016) Effects of Psidium guajava (Guava) Extracts on Immature Stage of Mosquito. International Journal of Complementary and Alternative Medicine, 4, Article ID: 00132.
https://doi.org/10.15406/ijcam.2016.04.00132
[26]  Gutierrez, R.M.P., Mitchell, S. and Solis, R.V. (2008) Psidium guajava: A Review of Its Traditional Uses, Phytochemistry and Pharmacology. Journal of Ethnopharmacology, 117, 1-27.
https://doi.org/10.1016/j.jep.2008.01.025
[27]  Raghunandan, D., Mahesh, B.D., Basavaraja, S., Balaji, S.D., Manjunath, S.Y. and Venkataraman, A. (2011) Microwave-Assisted Rapid Extracellular Synthesis of Stable Bio-Functionalized Silver Nanoparticles from Guava (Psidium guajava) Leaf Extract. Journal of Nanoparticles Research, 13, 2021-2028.
https://doi.org/10.1007/s11051-010-9956-8
[28]  Parashar, U.K., Kumar, V., Bera, T., Saxena, P.S., Nath, G., Srivastava, S.K., Giri, R. and Srivastava, A. (2011) Study of Mechanism of Enhanced Antibacterial Activity by Green Synthesis of Silver Nanoparticles. Nanotechnology, 22, Article ID: 415104.
https://doi.org/10.1088/0957-4484/22/41/415104
[29]  Prasad, T.N.V.K.V., Elumalai, E.K. and Khateeja, S. (2011) Evaluation of the Antimicrobial Efficacy of Phytogenic Silver Nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 1, S82-S85.
https://doi.org/10.1016/S2221-1691(11)60130-5
[30]  Priya, R.S., Geetha, D. and Ramesh, P.S. (2014) Green Synthesis of Silver Nanoparticles Using Psidium guajava Leaf Extract and Their Characterization. Indian Streams Research Journal, 4, 1-7.
[31]  Sriram, T. and Pandidurai, V. (2014) Synthesis of Silver Nanoparticles from Leaf Extract of Psidium guajava and Its Antibacterial Activity against Pathogens. International Journal of Current Microbiology and Applied Sciences, 3, 146-152.
[32]  Shinde, N.M., Lokhande, A.C. and Lokhande, C.D. (2014) A Green Synthesis Method for Large Area Silver Thin Film Containing Nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 136, 19-25.
https://doi.org/10.1016/j.jphotobiol.2014.04.011
[33]  Moteriya, P., Padalia, H. and Chanda, S. (2014) Green Biosynthesis of Silver Nanoparticles Using Psidium guajava L. Leaf Extract and Antibacterial Activity against Some Pathogenic Microorganisms. Journal of Pharmaceutical Research, 8, 1579-1585.
[34]  Lokina, S., Stephen, A., Kaviyarasan, V., Arulvasu, C. and Narayanan, V. (2015) Cytotoxicity and Antimicrobial Studies of Silver Nanoparticles Synthesized Using Psidium guajava L. Extract. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 45, 426-432.
https://doi.org/10.1080/15533174.2013.831881
[35]  Manogaran, S., Krishnan, N., Senthilkumar, V.S., Manivannan, S., Veerababhu, V. and Kannan, K.P. (2015) Green Synthesis of Silver Nanoparticles and Their Antimicrobial Property of Endophytic Fungi Isolated from Mentha arvensis L. and Psidium guajava L. Journal of Chemical and Pharmaceutical Research, 7, 340-346.
[36]  Rochlani, K., Vadakkekara, R., Chakraborty, M. and Dasgupta, S. (2016) Antibacterial Activity of Biostabilized Silver Nanoparticles. Indian Journal of Chemical Technology, 23, 520-526.
[37]  Dama, L.B., Mane, P.P., Pathan, A.V., Chandarki, M.S., Sonawane, S.R., Dama, S.B., Chavan, S.R., Chondekar, R.P. and Vinchurkar, A.S. (2016) Green Synthesis of Silver Nanoparticles Using Leaf Extract of Lawsonia inermis and Psidium guajava and Evaluation of Their Antibacterial Activity. Scientific Research Reporter, 6, 89-95.
[38]  Bose, D. and Chatterjee, S. (2016) Biogenic Synthesis of Silver Nanoparticles Using Guava (Psidium guajava) Leaf Extract and Its Antibacterial Activity against Pseudomonas aeruginosa. Applied Nanosciences, 6, 895-901.
https://doi.org/10.1007/s13204-015-0496-5
[39]  Ravindra, B.K. and Patil, N.G. (2017) Synthesis and Characterization of Silver Nanoparticles Using Psidium guajava Leaves. International Journal of Innovative Research and Reviews, 5, 72-77.
[40]  Banik, I., Som, M., Bhattacharjee, S., Bhattacharyya, S. and Rai, C. (2017) Bacteriostatic Activities of Antioxidant Silver Nanoparticles Prepared from Leaves of Azadirachta indica and Psidium guajava. European Journal of Pharmaceutical and Medical Research, 4, 223-228.
[41]  Geetha, V. (2017) Green Synthesis of Silver Nanoparticles from Psidium guajava Leaves and Its Antibacterial Activity. International Journal of Bioassays, 6, 5441-5443.
https://doi.org/10.21746/ijbio.2017.07.003
[42]  Wang, L., Xie, J., Huang, T., Ma, Y. and Wu, Z. (2017) Characterization of Silver Nanoparticles Biosynthesized Using Crude Polysaccharides of Psidium guajava L. Leaf and Their Bioactivities. Materials Letters, 208, 126-129.
https://doi.org/10.1016/j.matlet.2017.05.014
[43]  Wang, L., Wu, Y., Xie, J., Wu, S. and Wu, Z. (2018) Characterization, Antioxidant and Antimicrobial Activities of Green Synthesized Silver Nanoparticles from Psidium guajava L. Leaf Aqueous Extracts. Materials Science and Engineering: C, 86, 1-8.
https://doi.org/10.1016/j.msec.2018.01.003
[44]  Wang, L., Lu, F., Liu, Y., Wu, Y. and Wu, Z. (2018) Photocatalytic Degradation of Organic Dyes and Antimicrobial Activity of Silver Nanoparticles Fast Synthesized by Flavonoids Fraction of Psidium guajava L. Leaves. Journal of Molecular Liquids, 263, 187-192.
https://doi.org/10.1016/j.molliq.2018.04.151
[45]  Parveen, A., Yalagatti, M.S., Abbaraju, V. and Deshpande, R. (2018) Emphasized Mechanistic Antimicrobial Study of Biofunctionalized Silver Nanoparticles on Model Proteus mirabilis. Journal of Drug Delivery, 2018, Article ID: 3850139.
https://doi.org/10.1155/2018/3850139
[46]  Sharmila, C., Ranjith Kumar, R. and Chandar Shekar, B. (2018) Psidium guajava: A Novel Plant in the Synthesis of Silver Nanoparticles for Biomedical Applications. Asian Journal of Pharmaceutical and Clinical Research, 11, 341-345.
https://doi.org/10.22159/ajpcr.2017.v11i1.21999
[47]  Radhakrishnan, S., Komathi, S. and Rajalakshmi, G. (2018) Synthesis of Silver Nanoparticles from Psidium guajava Leaf Extract and Their Antibacterial Activity. European Journal of Biomedical and Pharmaceutical Sciences, 5, 783-786.
[48]  Pagadala, R.S., Mekala, R., Sapara, S.H., Tenkayala, S.R. and Gangadhara, R. (2018) Green Synthesis and Characterization of Silver Nanoparticles by Using Psidium guajava Leaf Extract. Journal of Drug Delivery and Therapeutics, 8, 301-305.
https://doi.org/10.22270/jddt.v8i5-s.2025
[49]  Bhatt, K.D., Desai, Y.R., Sharma, N.K., Sukhadiya, P.C. and Zalaiya, M.R. (2019) Aqueous Stable Silver Nanoparticles Derived from Nimble Leaves of Psidium guajava. International Journal Conference Proceedings, 1, ICP.000519.2019.
[50]  Suwan, T., Khongkhunthian, S. and Okonogi, S. (2019) Antifungal Activity of Polymeric Micelles of Silver Nanoparticles Prepared from Psidium guajava Aqueous Extract. Drug Discovery and Therapeutics, 13, 62-69.
https://doi.org/10.5582/ddt.2019.01024
[51]  Eya’ane Meva, F., Okalla Ebongue, C., Véronique Fannang, S., Segnou, M.L., Ntoumba, A.A., Belle Ebanda Kedi, P., Njike Loudang, R.-E., Yonga Wanlao, A., Mang, E.R. and Mpondo Mpondo, E.A. (2017) Spectroscopic Synthetic Optimizations Monitoring of Silver Nanoparticles Formation from Megaphrynium macrostachyum Leaf Extract. Journal of Nanomaterials, 2017, Article ID: 6834726.
https://doi.org/10.1155/2017/6834726
[52]  Belle Ebanda Kedi, P., Eya’ane Meva, F., Kotsedi, L., Nguemfo, E.L., Bogning Zangueu, C., Ntoumba, A.A., Mohamed, H.E.A., Dongmo, A.B. and Maaza, M. (2018) Eco-Friendly Synthesis, Characterization, in Vitro and in Vivo Anti-Inflammatory Activity of Silver Nanoparticle-Mediated Selaginella myosurus Aqueous Extract. International Journal of Nanomedicine, 13, 8537-8548.
https://doi.org/10.2147/IJN.S174530
[53]  WHO—World Health Organization (2005) Guidelines for Laboratory and Field Testing of Mosquito Larvicides. WHO/CDS/WHOPES/GCDPP/2005.13.
[54]  Awwad, A.M., Salem, N.M., Ibrahim, Q.M. and Abdeen, A.O. (2015) Phytochemical Fabrication and Characterization of Silver/Silver Chloride Nanoparticles Using Albizia julibrissin Flowers Extract. Advanced Materials Letters, 6, 726-730.
https://doi.org/10.5185/amlett.2015.5816
[55]  Eya’ane Meva, F., Avom Mbeng, J.O., Okalla Ebongue, C., Schlüsener, C., Kökҫam-Demir, ü., Ntoumba, A.A., Belle Ebanda Kedi, P., Elanga, E., Njike Loudang, E.-R., Nko’o, M.H.J., Tchoumbi, E.E., Deli, V., Chick Nanga, C., Mpondo Mpondo, E.A. and Janiak, C. (2019) Stachytarpheta cayennensis Aqueous Extract, a New Bioreactor towards Silver Nanoparticles for Biomedical Applications. Journal of Biomaterials and Nanobiotechnology, 10, 102-119.
https://doi.org/10.4236/jbnb.2019.102006
[56]  Mondal, N.K., Chowdhury, A., Dey, U., Mukhopadhya, P., Chatterjee, S., Das, K. and Datta, J.K. (2014) Green Synthesis of Silver Nanoparticles and Its Application for Mosquito Control. Asian Pacific Journal of Tropical Diseases, 4, S204-S210.
https://doi.org/10.1016/S2222-1808(14)60440-0
[57]  Rate, H.T. (1999) Bioaccumulation and Toxicity of Silver Compounds: A Review. Environmental Toxicology and Chemistry, 18, 89-108.
https://doi.org/10.1002/etc.5620180112

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133