全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Electrochemical Evaluation of Aminoguanidine Hydrazone Derivative with Potential Anticancer Activity: Studies of Glassy Carbon/CNT and Gold Electrodes Both Modified with PAMAM

DOI: 10.4236/jbnb.2020.111003, PP. 33-48

Keywords: Drug Delivery, Aminoguanidine Hydrazone, Modified Electrode, PAMAM

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aminoguanidine hydrazones (AGHs) are a class of compounds that have interesting pharmacological activities. They are derived from the same chemical group as aminoguanidine, so it has mixed properties (receptor and donor) in the formation of hydrogen bonds. Its anticancer agent properties were recently highlighted, but the molecules of this class have solubility in aqueous solutions that can be considered low. The identification of this class, by a simple, sensitive and low-cost technique, such as electrochemistry, which also allows the evaluation of its solubilization process through agents such as PAMAM dendrimer is the main objective of the work described here. The electrochemical response of the LQM10 (AGH derivative) was evaluated, as well as its behavior in different electrochemical sensors. Electrochemical experiments were performed in buffered (phosphate at pH 7.02 and acetate at 4.5). LQM10 has a reversible oxidation peak with a potential of +0.22 V. It was efficiently detected in different electrodes tested (glass carbon/CNT, glass carbon/CNT/PAMAM), which proves the viability of the electrodes for various analyses and has the determination of the apparent constant association, indicating its interaction with the analysis that is higher in the presence of the PAMAM encapsulating agent. This was corroborated by the results for the modified gold electrode with MUA and PAMAM. The sum of the results shows the possibility of electrochemically evaluating the Aminoguanidine hydrazone derivative, the viability of electrodes employed and the greater solubilization of LQM10 in the presence of the PAMAM dendrimer.

References

[1]  Chaffman, M., Heel, R.C., Brogden, R.N., Speight, T.M. and Avery, G.S. (1984) Indapamide a Review of Its Pharmacodynamic Properties and Therapeutic Efficacy in Hypertension. Drugs, 28, 189-235.
https://doi.org/10.2165/00003495-198428030-00001
[2]  Schäfer, S.G., Kaan, E.C., Christen, M.O., Löw-Kröger, A., Mest, H.-J. and Molderings, G.-J. (1995) Why Imidazoline Receptor Modulator in the Treatment of Hypertension? Annals of the New York Academy of Sciences, 763, 659-672.
https://doi.org/10.1111/j.1749-6632.1995.tb32460.x
[3]  Sica, D.A. (2007) Centrally Acting Antihypertensive Agents: An Update. The Journal of Clinical Hypertension, 9, 399-405.
https://doi.org/10.1111/j.1524-6175.2007.07161.x
[4]  Volkmann, H., Hoffmann, A., Kühnert, H., Dannberg, G., Heinke, M., Reimann, I., Marschner, J.P. and Farker, K. (1993) Clinical-Electrophysiologic Studies on the Actions of the Anti-Arrhythmic Substance AWD-G256 in Man. Pharmazie, 48, 380-385.
http://www.ncbi.nlm.nih.gov/pubmed/8327568
[5]  Farker, K., Henschel, L., Marschner, J.P., Reimann, I., Volkmann, H. and Hoffmann, A. (1992) Investigations into a New Antiarrhythmic Substance Z-2-Amino-5-Chlor-Benzophenon-Amidin-Hydralazin in Humans. International Journal of Clinical Pharmacology, Therapy, and Toxicology, 30, 513-514.
http://www.ncbi.nlm.nih.gov/pubmed/1490815
[6]  Hammoud, H., Elhabazi, K., Quillet, R., Bertin, I., Utard, V., Laboureyras, E., Bourguignon, J.-J., Bihel, F., Simonnet, G., Simonin, F. and Schmitt, M. (2018) Aminoguanidine Hydrazone Derivatives as Nonpeptide NPFF1 Receptor Antagonists Reverse Opioid Induced Hyperalgesia. ACS Chemical Neuroscience, 9, 2599-2609.
https://doi.org/10.1021/acschemneuro.8b00099
[7]  Dantas, N., de Aquino, T.M., de Araújo-Júnior, J.X., da Silva-Júnior, E., Gomes, E.A., Gomes, A.A.S., Siqueira-Júnior, J.P. and Mendon ça Junior, F.J.B. (2018) Aminoguanidine Hydrazones (AGH’s) as Modulators of Norfloxacin Resistance in Staphylococcus aureus That Overexpress NorA Efflux Pump. Chemico-Biological Interactions, 280, 8-14.
https://doi.org/10.1016/j.cbi.2017.12.009
[8]  França, P.H.B., Da Silva-Júnior, E.F., Aquino, P.G.V., Santana, A.E.G., Ferro, J.N.S., De Oliveira Barreto, E., Do ó Pessoa, C., Meira, A.S., De Aquino, T.M., Alexandre-Moreira, M.S., Schmitt, M. and De Araújo-Júnior, J.X. (2016) Preliminary in Vitro Evaluation of the Anti-Proliferative Activity of Guanylhydrazone Derivatives. Acta Pharmaceutica, 66, 129-137.
https://doi.org/10.1515/acph-2016-0015
[9]  Arndt, D., Fichtner, I. and Nissen, E. (1987) Liposomes as Carrier of Methyl-GAG. Oncology, 44, 257-262.
https://doi.org/10.1159/000226490
[10]  Abedi-Gaballu, F., Dehghan, G., Ghaffari, M., Yekta, R., Abbaspour-Ravasjani, S., Baradaran, B., Ezzati Nazhad Dolatabadi, J. and Hamblin, M.R. (2018) PAMAM Dendrimers as Efficient Drug and Gene Delivery Nanosystems for Cancer Therapy. Applied Materials Today, 12, 177-190.
https://doi.org/10.1016/j.apmt.2018.05.002
[11]  Li, J., Liang, H., Liu, J. and Wang, Z. (2018) Poly (amidoamine) (PAMAM) Dendrimer Mediated Delivery of Drug and pDNA/siRNA for Cancer Therapy. International Journal of Pharmaceutics, 546, 215-225.
https://doi.org/10.1016/j.ijpharm.2018.05.045
[12]  Das, K., Beans, C., Holsbeek, L., Mauger, G., Berrow, S., Rogan, E. and Bouquegneau, J. (2003) Marine Mammals from Northeast Atlantic: Relationship between Their Trophic Status as Determined by δ13C and δ15N Measurements and Their Trace Metal Concentrations. Marine Environmental Research, 56, 349-365.
https://doi.org/10.1016/S0141-1136(02)00308-2
[13]  Bikiaris, D. (2012) Nanomadicine in Cancer Treatment: Drug Targeting and the Safety of the Used Materials for Drug Nanoencapsulation. Biochemical Pharmacology, 1, 121-123.
https://doi.org/10.4172/2167-0501.1000e122
[14]  Matsuura, S., Katsumi, H., Suzuki, H., Hirai, N., Hayashi, H., Koshino, K., Higuchi, T., Yagi, Y., Kimura, H., Sakane, T. and Yamamoto, A. (2018) l-Serine-Modified Polyamidoamine Dendrimer as a Highly Potent Renal Targeting Drug Carrier. Proceedings of the National Academy of Sciences of the United States of America, 115, 10511-10516.
https://doi.org/10.1073/pnas.1808168115
[15]  Paolini, A., Leoni, L., Giannicchi, I., Abbaszadeh, Z., D’Oria, V., Mura, F., Dalla Cort, A. and Masotti, A. (2018) MicroRNAs Delivery into Human Cells Grown on 3D-Printed PLA Scaffolds Coated with a Novel Fluorescent PAMAM Dendrimer for Biomedical Applications. Scientific Reports, 8, Article No. 13888.
https://doi.org/10.1038/s41598-018-32258-9
[16]  Svenson, S. and Tomalia, D.A. (2012) Dendrimers in Biomedical Applications— Reflections on the Field. Advanced Drug Delivery Reviews, 64, 102-115.
https://doi.org/10.1016/j.addr.2012.09.030
[17]  Pan, S., Cao, D., Fang, R., Yi, W., Huang, H., Tian, S. and Feng, M. (2013) Cellular Uptake and Transfection Activity of DNA Complexes Based on Poly(ethylene glycol)-Poly(l-glutamine) Copolymer with PAMAM G2. Journal of Materials Chemistry B, 1, 5114-5127.
https://doi.org/10.1039/c3tb20649a
[18]  Taghavi Pourianazar, N., Mutlu, P. and Gunduz, U. (2014) Bioapplications of Poly(amidoamine) (PAMAM) Dendrimers in Nanomedicine. Journal of Nanoparticle Research, 16, 2342.
https://doi.org/10.1007/s11051-014-2342-1
[19]  Devi, C.L. and Narayanan, S.S. (2019) Poly(amido amine) Dendrimer/Silver Nanoparticles/Multi-Walled Carbon Nanotubes/Poly(neutral red)-Modified Electrode for Electrochemical Determination of Paracetamol. Ionics (Kiel), 25, 2323-2335.
https://doi.org/10.1007/s11581-018-2609-0
[20]  Kim, T.H., Choi, H.S., Go, B.R. and Kim, J. (2010) Modification of a Glassy Carbon Surface with Amine-Terminated Dendrimers and Its Application to Electrocatalytic Hydrazine Oxidation. Electrochemistry Communications, 12, 788-791.
https://doi.org/10.1016/j.elecom.2010.03.034
[21]  Astruc, D. (2012) Electron-Transfer Processes in Dendrimers and Their Implication in Biology, Catalysis, Sensing and Nanotechnology. Nature Chemistry, 4, 255-267.
https://doi.org/10.1038/nchem.1304
[22]  Bustos, E., Manríquez, J., Juaristi, E., Chapman, T.W. and Godínez, L.A. (2008) Electrochemical Study of β-Cyclodextrin Binding with Ferrocene Tethered onto a Gold Surface via PAMAM Dendrimers. Journal of the Brazilian Chemical Society, 19, 1010-1016.
https://doi.org/10.1590/S0103-50532008000500028
[23]  Candido, A.C.L., da Silva, M.P.G., da Silva, E.G. and de Abreu, F.C. (2018) Electrochemical and Spectroscopic Characterization of the Interaction between β-Lapachone and PAMAM Derivatives Immobilized on Surface Electrodes. Journal of Solid State Electrochemistry, 22, 1581-1590.
https://doi.org/10.1007/s10008-018-3880-8
[24]  da Silva, M.P.G., Candido, A.C.L., Lins, S. de L., de Aquino, T.M., Mendonça, F.J.B. and de Abreu, F.C. (2017) Electrochemical Investigation of the Toxicity of a New Nitrocompound and Its Interaction with β-Cyclodextrin and Polyamidoamine Third-Generation. Electrochimica Acta, 251, 442-451.
https://doi.org/10.1016/j.electacta.2017.08.111
[25]  Tang, B., Liang, H.-L., Xu, K.-H., Mao, Z., Shi, X.-F. and Chen, Z.-Z. (2005) An Improved Synthesis of Disulfides Linked β-Cyclodextrin Dimer and Its Analytical Application for Dequalinium Chloride Determination by Spectrofluorimetry. Analytica Chimica Acta, 554, 31-36.
https://doi.org/10.1016/j.aca.2005.08.048
[26]  Inesi, A. (1986) Instrumental Methods in Electrochemistry. Bioelectrochemistry and Bioenergetics, 15, 531.
https://doi.org/10.1016/0302-4598(86)85047-4
[27]  Jiang, Q., Song, L.J., Yang, H., He, Z.W. and Zhao, Y. (2008) Preparation and Characterization on the Carbon Nanotube Chemically Modified Electrode Grown in Situ. Electrochemistry Communications, 10, 424-427.
https://doi.org/10.1016/j.elecom.2008.01.006
[28]  Alarcón-Angeles, G., Pérez-López, B., Palomar-Pardave, M., Ramírez-Silva, M.T., Alegret, S. and Merkoçi, A. (2008) Enhanced Host-Guest Electrochemical Recognition of Dopamine Using Cyclodextrin in the Presence of Carbon Nanotubes. Carbon, 46, 898-906.
https://doi.org/10.1016/j.carbon.2008.02.025
[29]  Ferreira, F.D.R., da Silva, E.G., De Leo, L.P.M., Calvo, E.J., Bento, E.D.S., Goulart, M.O.F. and de Abreu, F.C. (2010) Electrochemical Investigations into Host-Guest Interactions of a Natural Antioxidant Compound with β-Cyclodextrin. Electrochimica Acta, 56, 797-803.
https://doi.org/10.1016/j.electacta.2010.09.066
[30]  Maeda, Y., Fukuda, T., Yamamoto, H. and Kitano, H. (1997) Regio- and Stereoselective Complexation by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode. Langmuir, 13, 4187-4189.
https://doi.org/10.1021/la9701384
[31]  Damos, F.S., Luz, R.C.S., Sabino, A.A., Eberlin, M.N., Pilli, R.A. and Kubota, L.T. (2007) Adsorption Kinetic and Properties of Self-Assembled Monolayer Based on Mono(6-deoxy-6-mercapto)-β-cyclodextrin Molecules. Journal of Electroanalytical Chemistry, 60, 1181-193.
https://doi.org/10.1016/j.jelechem.2006.11.004
[32]  Zeng, Y.-L., Huang, Y.-F., Jiang, J.-H., Zhang, X.-B., Tang, C.-R., Shen, G.-L. and Yu, R.-Q. (2007) Functionalization of Multi-Walled Carbon Nanotubes with Poly(amidoamine) Dendrimer for Mediator-Free Glucose Biosensor. Electrochemistry Communications, 9, 185-190.
https://doi.org/10.1016/j.elecom.2006.08.052
[33]  Zhu, X., Ai, S., Chen, Q., Yin, H. and Xu, J. (2009) Label-Free Electrochemical Detection of Avian Influenza Virus Genotype Utilizing Multi-Walled Carbon Nanotubes-Cobalt Phthalocyanine-PAMAM Nanocomposite Modified Glassy Carbon Electrode. Electrochemistry Communications, 11, 1543-1546.
https://doi.org/10.1016/j.elecom.2009.05.055
[34]  Wu, M.-S., Chen, R.-N., Xiao, Y. and Lv, Z.-X. (2016) Novel “Signal-On” Electrochemiluminescence Biosensor for the Detection of PSA Based on Resonance Energy Transfer. Talanta, 161, 271-277.
https://doi.org/10.1016/j.talanta.2016.08.060
[35]  Vijayaraghavan, G. and Stevenson, K.J. (2007) Synergistic Assembly of Dendrimer-Templated Platinum Catalysts on Nitrogen-Doped Carbon Nanotube Electrodes for Oxygen Reduction. Langmuir, 23, 5279-5282.
https://doi.org/10.1021/la0637263
[36]  Herrero, M.A., Guerra, J., Myers, V.S., Gómez, M.V., Crooks, R.M. and Prato, M. (2010) Gold Dendrimer Encapsulated Nanoparticles as Labeling Agents for Multiwalled Carbon Nanotubes. ACS Nano, 4, 905-912.
https://doi.org/10.1021/nn901729d
[37]  Şenel, M. and Nergiz, C. (2012) Development of a Novel Amperometric Glucose Biosensor Based on Copolymer of Pyrrole-PAMAM Dendrimers. Synthetic Metals, 162, 688-694.
https://doi.org/10.1016/j.synthmet.2012.02.018
[38]  Xu, L., Zhu, Y., Tang, L., Yang, X. and Li, C. (2007) Biosensor Based on Self-Assembling Glucose Oxidase and Dendrimer-Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose Detection. Electroanalysis, 19, 717-722.
https://doi.org/10.1002/elan.200603805
[39]  Devarakonda, B., Otto, D., Judefeind, A., Hill, R. and Devilliers, M. (2007) Effect of pH on the Solubility and Release of Furosemide from Polyamidoamine (PAMAM) Dendrimer Complexes. International Journal of Pharmaceutics, 345, 142-153.
https://doi.org/10.1016/j.ijpharm.2007.05.039
[40]  Kádár, M., Biró, A., Tóth, K., Vermes, B. and Huszthy, P. (2005) Spectrophotometric Determination of the Dissociation Constants of Crown Ethers with Grafted Acridone Unit in Methanol Based on Benesi-Hildebrand Evaluation. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 62, 1032-1038.
https://doi.org/10.1016/j.saa.2005.04.034
[41]  Wang, Y., Rogers, E.I., Belding, S.R. and Compton, R.G. (2010) The Electrochemical Reduction of 1,4-benzoquinone in 1-ethyl-3-methylimidazolium Bis(trifluoro-methane-sulfonyl)-imide, [C2mim] [NTf2]: A Voltammetric Study of the Comproportionation between Benzoquinone and the Benzoquinone Dianion. Journal of Electroanalytical Chemistry, 648, 134-142.
https://doi.org/10.1016/j.jelechem.2010.07.016
[42]  Bobrovnik, S. (2002) Ligand-Receptor Interaction. Klotz-Hunston Problem for Two Classes of Binding Sites and Its Solution. Journal of Biochemical and Biophysical Methods, 52, 135-143.
https://doi.org/10.1016/S0165-022X(02)00069-6
[43]  Buczkowski, A., Sekowski, S., Grala, A., Palecz, D., Milowska, K., Urbaniak, P., Gabryelak, T., Piekarski, H. and Palecz, B. (2011) Interaction between PAMAM-NH2 G4 Dendrimer and 5-Fluorouracil in Aqueous Solution. International Journal of Pharmaceutics, 408, 266-270.
https://doi.org/10.1016/j.ijpharm.2011.02.014

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133