全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于正交试验的高液限黏土复合改性剂研究
Study on High Liquid Limit Clay Composite Stabilizer Based on Orthogonal Test

DOI: 10.12677/HJCE.2019.89160, PP. 1370-1379

Keywords: 高液限黏土,复合改性剂,界限含水率,无侧限抗压强度,正交试验
High Liquid Limit Clay
, Composite Stabilizer, Limit Moisture Content, Unconfined Compressive Strength, Orthogonal Test

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对山东省黄泛区湖淤积高液限黏土,采用低纯度生石灰和固废材料脱硫石膏、制浆白泥为原材料,制备了一种复合高液限黏土改性剂——CGM改性剂。改性剂中各组分的掺量分别选取0、2%和4%,采用正交试验的方法,对各组改性土的界限含水率和无侧限抗压强度变化规律进行分析,探究各组分的最佳掺量。分析结果表明,3个因素对界限含水率的影响程度由大到小为:脱硫石膏 > 生石灰 > 制浆白泥;对无侧限抗压强度的影响程度由大到小为:生石灰 > 脱硫石膏 > 制浆白泥。综合考虑改性效果,将改性剂的配比定为生石灰:脱硫石膏:制浆白泥 = 40:40:20,CGM改性剂的最佳掺量定为10%。
Aiming at high-liquid limit clay in Yellow River flood plain of Shandong province, a composite high liquid limit clay stabilizer—CGM stabilizer, was prepared by using quick lime, industrial solid waste materials desulfurization gypsum and pulping white mud as raw materials. The content of each component in the stabilizer was 0, 2% and 4%, respectively. To confirm the optimum dosage of each component, the variation of the limit moisture content and unconfined compressive strength of each group was analyzed by orthogonal test. The range analysis clearly indicates that the influence degree of the three factors on limit moisture content is in such an order: desulfurization gypsum, quick lime and pulping white, and on unconfined compressive strength is in another order: quick lime, desulfurization gypsum and pulping white. Considering the modification effect comprehensively, the ratio of stabilizer was set as quick lime:desulfurization gypsum:pulping white mud = 40:40:20, and the optimal content of CGM stabilizer was set as 10%.

References

[1]  李沛, 杨武, 邓永锋, 等. 土壤固化剂发展现状和趋势[J]. 路基工程, 2014(3): 1-8.
[2]  Peng, T., Tang, C.L., Chen, Q., et al. (2015) Application of New-Type Soil Stabilizer Q2 in Subgrade Construction. Agricultural Engineering and Agricultural Machinery, 16, 384-390.
[3]  Zhao, Y.L., Gao, Y., Zhang, Y.L., et al. (2017) Analysis of Influence Factors of Unconfined Compressive Strength for Composite Soil Stabilizer-Stabilized Gravel Soil. Journal of Southeast University (English Edition), 33, 484-489.
[4]  王银梅, 韩文峰, 谌文武. 新型高分子固化材料与水泥加固黄土力学性能对比研究[J]. 岩土力学, 2004, 25(11): 1761-1765.
[5]  薛颖慎. 滨海淤泥固化填筑路基应用技术研究[D]: [硕士学位论文]. 西安: 长安大学, 2015.
[6]  王朝辉, 刘志胜, 王晓华, 等. 应用新型CVC固化剂固化淤泥路用性能[J]. 长安大学学报(自然科学版), 2012, 32(5): 1-6.
[7]  徐日庆, 王旭, 文嘉毅, 等. 浅层淤泥质土固化剂[J]. 上海交通大学学报, 2019, 53(7): 805-811.
[8]  刘瑾, 白玉霞, 宋泽卓, 等. OPS型固化剂改良砂土工程特性试验研究[J]. 东南大学学报(自然科学版), 2019, 49(3): 495-501.
[9]  孙家瑛, 沈建生. 新型固化剂GSC固化软土的力学性能试验研究[J]. 土木建筑与环境工程, 2013, 35(1): 20-25.
[10]  郭乾, 魏明俐, 杜广印, 等. AMC固化高液限黏土的强度及孔隙特征研究[J]. 中国矿业大学学报, 2018, 47(4): 838-845.
[11]  刘清秉, 项伟, 崔德山, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 33(4): 648-654.
[12]  祝学勇, 刘海威, 马晓燕, 等. 黄泛区湖淤积高液限黏土的改性研究[J]. 山东大学学报(工学版), 2019, 49(1): 83-90.
[13]  梅长林, 周家良. 实用统计方法[M]. 北京: 科学出版社, 2002.
[14]  陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133