全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

固体污染物对Al2O3激光诱导热损伤影响的仿真研究
Simulation Study on the Effect of Solid Contaminants on the Laser-Induced Hot Damage of Al2O3

DOI: 10.12677/CMP.2019.83009, PP. 69-75

Keywords: 固体污染物,Al2O3,激光损伤,仿真研究
Solid Contaminants
, Al2O3, Laser Damage, Simulation Study

Full-Text   Cite this paper   Add to My Lib

Abstract:

Al2O3是高功率激光装置中广泛应用的材料,其在激光辐照工作时表面由于缺陷产生损伤,进而产生的大量污染物会造成光学元件性能严重下降,是制约高功能激光装置进一步发展的主要因素之一。表面损伤主要是由于表面依附污染物引起的,其中,固体污染物又是最主要的诱发损伤源,因此,研究固体污染物对Al2O3表面抗激光损伤性能的影响就显得尤为重要。本文针对固体类无机污染物对Al2O3表面影响进行了研究,对不同类型、不同尺寸的固体污染物对Al2O3表面温度的影响进行了仿真研究,发现当Al2O3表面存在污染物时,更容易发生激光损伤,且不同种类、不同尺寸污染物对Al2O3激光损伤的影响不同。
Al2O3 is the most widely used in high power laser material, the surface damage at work can cause serious decline, optical device performance is the main factor restricting the development of high functional laser device further. One of the surface damages is mainly caused by the surface at-tachment of contaminants, among them, the solid contaminants are the main source of induced damage, therefore, research on the surface of Al2O3 solid contaminants laser damage resistance of the impact is particularly important. Effect on surface of Al2O3 based on solid inorganic contami-nants was studied, with different types, different size of the surface of the solid pollutants of Al2O3 are simulated to examine the effects of temperature, and found that when Al2O3 surface contami-nants, laser damage is more likely to occur, and different types,

References

[1]  张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12): 3091-3097.
[2]  刘成安, 师学明. 美国激光惯性约束聚变能源研究综述[J]. 原子核物理评论, 2013, 30(1): 89-93.
[3]  Peng, H., Zhang, X.M. and Wei, X. (2008) Status of the SG-III Solid State Laser Project. Proceedings of SPIE, 3492, 32009.
[4]  Kalantar, D., Nelson, D. and Bliss, E. (2011) National Ignition Facility System Alignment. Applied Optics, 50, 1136-1157.
https://doi.org/10.1364/AO.50.001136
[5]  Horvath, J.A. (1996) NIF/LMJ Prototype Amplifier Mechanical Design. Lawrence Livermore National Laboratory, 148-157.
https://doi.org/10.1117/12.294298
[6]  Schweyen, J.C. (1998) Ghost Reflection Analysis for the Main Laser of the National Ignition Facility. Proceedings of SPIE, 3482, 748-753.
https://doi.org/10.1117/12.321973
[7]  李良钰, 王仕, 李银柱. “神光”装置中空间滤波器的鬼点分析[J]. 中国激光, 2001, 28(9): 826-828.
[8]  王方, 朱启华, 张清泉. 高功率激光装置中透镜一阶“鬼”点形成规律分析[J]. , 2005, 29(3): 170-171.
[9]  Feit, A. and Rubenchik, A.M. (2003) Influence of Subsurface Cracks on Laser-Induced Surface Damage. Proceeding of SPIE, 5273, 265-273.
[10]  Stuart, B.C., Feit, M.D. and Herman, S. (1996) Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics. Physical Review B Condensed Matter, 53, 1749-1756.
https://doi.org/10.1103/PhysRevB.53.1749
[11]  Hopper, R.W. and Uhlmann, D.R. (1970) Mechanism of Inclusion Damage in Laser Glass. Journal of Applied Physics, 41, 4023-4037.
https://doi.org/10.1063/1.1658407
[12]  Martin, P., Moro?o, A. and Hodgson, E.R. (2004) Laser Induced Damage Enhancement Due to Stainless Steel Deposition on KS-4V and KU1 Quartz Glasses. Journal of Nuclear Materials, 329, 1442-1445.
https://doi.org/10.1016/j.jnucmat.2004.04.162
[13]  Honig, J., Norton, M.A. and Johnson, M.A. (2005) Experimental Study of 351-nm and 527-nm Laser-Initiated Surface Damage on Fused Silica Surfaces Due to Typical Contaminants. Proceedings of SPIE, 5647, 129-135.
https://doi.org/10.1117/12.597314
[14]  Génin, F.Y., Feit, M.D. and Kozlowski, M.R. (2000) Rear-Surface Laser Damage on 355-nm Silica Optics Owing to Fresnel Diffraction on Front-Surface Contamination Particles. Applied Optics, 39, 3654-3663.
https://doi.org/10.1364/AO.39.003654
[15]  Feit, M.D., Rubenchik, A.M. and Faux, D.R. (1996) Modeling of Laser Damage Initiated by Surface Contamination. Proceedings of SPIE, 2966, 417-424.
https://doi.org/10.1117/12.274234
[16]  Koldunov, M.F., Manenkov, A.A. and Pocotilo, I.L. (1994) Theory of Laser-Induced Damage to Optical Coatings: Inclusion-Initiated Thermal Explosion Mechanism. Proceedings of SPIE-The International Society for Optical Engineering, 2114.
https://doi.org/10.1117/12.180892

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133