|
固体污染物对Al2O3激光诱导热损伤影响的仿真研究
|
Abstract:
[1] | 张林, 杜凯. 激光惯性约束聚变靶技术现状及其发展趋势[J]. 强激光与粒子束, 2013, 25(12): 3091-3097. |
[2] | 刘成安, 师学明. 美国激光惯性约束聚变能源研究综述[J]. 原子核物理评论, 2013, 30(1): 89-93. |
[3] | Peng, H., Zhang, X.M. and Wei, X. (2008) Status of the SG-III Solid State Laser Project. Proceedings of SPIE, 3492, 32009. |
[4] | Kalantar, D., Nelson, D. and Bliss, E. (2011) National Ignition Facility System Alignment. Applied Optics, 50, 1136-1157. https://doi.org/10.1364/AO.50.001136 |
[5] | Horvath, J.A. (1996) NIF/LMJ Prototype Amplifier Mechanical Design. Lawrence Livermore National Laboratory, 148-157. https://doi.org/10.1117/12.294298 |
[6] | Schweyen, J.C. (1998) Ghost Reflection Analysis for the Main Laser of the National Ignition Facility. Proceedings of SPIE, 3482, 748-753. https://doi.org/10.1117/12.321973 |
[7] | 李良钰, 王仕, 李银柱. “神光”装置中空间滤波器的鬼点分析[J]. 中国激光, 2001, 28(9): 826-828. |
[8] | 王方, 朱启华, 张清泉. 高功率激光装置中透镜一阶“鬼”点形成规律分析[J]. , 2005, 29(3): 170-171. |
[9] | Feit, A. and Rubenchik, A.M. (2003) Influence of Subsurface Cracks on Laser-Induced Surface Damage. Proceeding of SPIE, 5273, 265-273. |
[10] | Stuart, B.C., Feit, M.D. and Herman, S. (1996) Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics. Physical Review B Condensed Matter, 53, 1749-1756. https://doi.org/10.1103/PhysRevB.53.1749 |
[11] | Hopper, R.W. and Uhlmann, D.R. (1970) Mechanism of Inclusion Damage in Laser Glass. Journal of Applied Physics, 41, 4023-4037. https://doi.org/10.1063/1.1658407 |
[12] | Martin, P., Moro?o, A. and Hodgson, E.R. (2004) Laser Induced Damage Enhancement Due to Stainless Steel Deposition on KS-4V and KU1 Quartz Glasses. Journal of Nuclear Materials, 329, 1442-1445.
https://doi.org/10.1016/j.jnucmat.2004.04.162 |
[13] | Honig, J., Norton, M.A. and Johnson, M.A. (2005) Experimental Study of 351-nm and 527-nm Laser-Initiated Surface Damage on Fused Silica Surfaces Due to Typical Contaminants. Proceedings of SPIE, 5647, 129-135.
https://doi.org/10.1117/12.597314 |
[14] | Génin, F.Y., Feit, M.D. and Kozlowski, M.R. (2000) Rear-Surface Laser Damage on 355-nm Silica Optics Owing to Fresnel Diffraction on Front-Surface Contamination Particles. Applied Optics, 39, 3654-3663.
https://doi.org/10.1364/AO.39.003654 |
[15] | Feit, M.D., Rubenchik, A.M. and Faux, D.R. (1996) Modeling of Laser Damage Initiated by Surface Contamination. Proceedings of SPIE, 2966, 417-424. https://doi.org/10.1117/12.274234 |
[16] | Koldunov, M.F., Manenkov, A.A. and Pocotilo, I.L. (1994) Theory of Laser-Induced Damage to Optical Coatings: Inclusion-Initiated Thermal Explosion Mechanism. Proceedings of SPIE-The International Society for Optical Engineering, 2114. https://doi.org/10.1117/12.180892 |