All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Isolation of Iron Bacteria from Washing Sludge Filters Kolda (Senegal) Water Treatment Station and Study of the Kinetics of Biological Degradation of the Iron (II)

DOI: 10.4236/ojmetal.2019.93003, PP. 19-32

Keywords: Biodegradation, Bacteria, Washing Mud, Iron, Kinetics, Efficiency

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the present work, the treatment of synthetic waters doped with iron (II) has been studied. The treatment mechanism used in this study is the biological oxidation which consists, in test tubes, of bringing bacteria isolated on Petri dishes into contact with water containing divalent iron (II). These de-ironing bacteria (non-specific bacteria) are used to carry out laboratory biological oxidation experiments on iron (II) under different pH conditions (pH = 3.4 - 3.6, pH = 7.3 - 7.5 and pH = 9.8 - 10) and variable concentration of iron (II). Biological treatment trials included different concentrations of iron during time intervals of a day. Examination of the elimination kinetics of Iron (II) indicates a removal rate of 59.453% for an initial iron concentration in the synthetic solution of 1 mg·L1 at basic pH (pH = 9.8 - 10). Therefore, the degradation of divalent iron by this method seems to be quite effective, but it should be noted that biological nitrification is impaired by the presence of high iron concentrations above 5 mg·L1.

References

[1]  Charles, P. (2008) Elimination catalytique du fer et du manganèse pour la production d’eau potable. Etude financée par l’Agence de l’Eau Seine Normandie, Rapport Final SUEZ Environnement, Octobre.
[2]  Chatain, V. (2004) Caractérisation de la mobilisation potentielle de l’arsenic et d’autres constituants inorganiques présents dans les sols issus d’un site minier aurifère. Thèse, Institut National des Sciences Appliquées de Lyon.
[3]  Du, X., Liu, G., Qu, F., Li, K., Shao, S., Li, G. and Liang, H. (2017) Removal of Iron, Manganese and Ammonia from Groundwater Using a PAC-MBR System: The Anti-Pollution Ability, Microbial Population and Membrane Fouling. Desalination, 403, 97-106.
https://doi.org/10.1016/j.desal.2016.03.002
[4]  Kouassi, M.A., Okaingni, J.C., Baka, D., Lasm, T., Kouame, F.K. and Biemi, J. (2012) Application des méthodes statistiques et géostatistiques à l’étude de la conductivité électrique des eaux souterraines de la région du N’zi-Comoé (Centre-Est de la Côte d’Ivoire). International Journal of Biological and Chemical Sciences, 6, 897-912.
https://doi.org/10.4314/ijbcs.v6i2.31
[5]  Chen, P., Bornhorst, J. and Aschner, M. (2018) Manganese Metabolism in Humans. Frontiers in Bioscience (Landmark Edition), 23, 1655-1679.
https://doi.org/10.2741/4665
[6]  Drits, V. and Manceau, A. (2000) A Model for the Mechanism of Fe3+ to Fe2+ Reduction in Dioctahedral Smectites. Clays and Clay Minerals, 48, 185-195.
https://doi.org/10.1346/CCMN.2000.0480204
[7]  Jean Rodier, B.L., Merlet, N., et al. (2009) Analyse de l’eau. Dunod, Paris, 1579.
[8]  Homoky, W., Hembury, D., Hepburn, L., Mills, R., Statham, P., Fones, G. and Palmer, M. (2011) Iron and Manganese Diagenesis in Deep Sea Volcanogenic Sediments and the Origins of Pore Water Colloids. Geochimica et Cosmochimica Acta, 75, 5032-5048.
https://doi.org/10.1016/j.gca.2011.06.019
[9]  Dégremont (2005) Les eaux eaux potable-Mémento technique de l’eau: Tome 2. Lavoisier SAS (éditeur)—Lexique technique de l’eau, Paris, 10e édition, 785 p.
[10]  De Pontual, L. (2017) Fer et prédisposition aux infections. Archives de Pédiatrie, 24, 5S14-15S17.
https://doi.org/10.1016/S0929-693X(17)24004-4
[11]  Pacini, V.A., Ingallinella, A.M. and Sanguinetti, G. (2005) Removal of Iron and Manganese Using Biological Roughing up Flow Filtration Technology. Water Research, 39, 4463-4475.
https://doi.org/10.1016/j.watres.2005.08.027
[12]  El Araby, R., Hawash, S. and El Diwani, G. (2009) Treatment of Iron and Manganese in Simulated Groundwater via Ozone Technology. Desalination, 249, 1345-1349.
https://doi.org/10.1016/j.desal.2009.05.006
[13]  Dieye, P.N. (2003) Comportements des acteurs et performances de la filière lait périurbain de Kolda (Sénégal). Institut agronomique méditerranéen.
[14]  Pontié, M., Rumeau, M., Ndiaye, M. and Diop, C.M. (1996) Sur le problème de la fluorose au Sénégal: Bilan des connaissances et présentation d’une nouvelle. Cahiers Santé, 6, 27-36.
[15]  Hamdeni, R.F. (2017) Performances du système hybride précipitation/microfiltration et de la nanofitration dans l’élimination du fer pour la potabilisation de l’eau. Université de Lyon. Document-thèse.
https://tel.archives-ouvertes.fr/tel-01810978
[16]  Elhussien, M. (2017) Removal of Iron (II) from Aqueous Solution Using Activated Carbon Derived from Pods of Acacia Nilotica Var Astringens (Sunt Tree) by Chemical Activation with ZnCl2. American Journal of Physical Chemistry, 6, 59-69.
https://doi.org/10.11648/j.ajpc.20170604.12
[17]  Tufekci, N. and Sarikaya, H.Z. (1998) Influence of Ageing on the Catalytic Activity of Ferric Sludge for Oxidation of Fe (II). Water Science and Technology, 38, 129-137.
https://doi.org/10.2166/wst.1998.0245
[18]  Katsoyiannis, I. and Zouboulis, A. (2004) Application of Biological Processes for the Removal of Arsenic from Groundwaters. Water Research, 38, 17-26.
https://doi.org/10.1016/j.watres.2003.09.011
[19]  Sogaard, E.G., Medenwaldt, R. and Abraham-Peskir, J.V. (2000) Conditions and Rates of Biotic and Abiotic Iron Precipitation in Selected Danish Freshwater Plants and Microscopic Analysis of Precipitate Morphology. Water Research, 34, 2675-2682.
https://doi.org/10.1016/S0043-1354(00)00002-6

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133