全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Analysis of Rainfall Dynamics in Conakry, Republic of Guinea

DOI: 10.4236/acs.2020.101001, PP. 1-20

Keywords: Conakry, Guinea, Maximum Rainfall, Precipitable Water, Divergence, Moisture Flow

Full-Text   Cite this paper   Add to My Lib

Abstract:

Observed rainfall data of the National Meteorological Service of Guinea (NMS) exhibit that synoptic station usually records the largest rainfall amount in Guinea. Only few studies have been done on this rainfall peak observed in Conakry. This work better analyses the atmospheric dynamics leading to rainfall particularity. Using NMS data from 1981 to 2010, the monthly contribution and mean seasonal cycle of each station has been done. These findings of the study show that between July and August (rainfall season peak), the coastline particularly Conakry records the largest amount of rainfall. Using Era Interim data for the common period (1981-2010), we also investigate the rainfall dynamics in the lower level (1000 hPa - 850 hPa) from precipitable water, divergence, and moisture flow transport. There is a west and southwest moisture flow transport explained by a strong moisture convergence in the coastal region (Lower-Guinea). Furthermore, values of precipitable water in the same region are found, in agreement with the high moisture flow transport gradient. These incoming flow (west and south-west) undergo a return by blocking’s Kakoulima range (foehn effect) and Fouta Djallon massif to initiate convection clouds on the Guinean coast. These processes enhance a convergence of moisture associated with orographic origin convection. This has an important effect by increasing the rainfall amount in Conakry.

References

[1]  Dione, C., Lothon, M., Badiane, D., Campistron, B., Couvreux, F., Guichard, F. and Sall, S.M. (2013) Phenomenology of Sahelian Convection Observed in Niamey during the Early Monsoon. Quarterly Journal of the Royal Meteorological Society, 140, 500-516. https://doi.org/10.1002/qj.2149
[2]  Thorncroft, C.D. (1995) An Idealized Study of African Easterly Waves. III: More Realistic Basic States. Quarterly Journal of the Royal Meteorological Society, 121, 1589-1614. https://doi.org/10.1002/qj.49712152706
[3]  Houze, R.A. (1993) Cloud Dynamics. Academic Press, Cambridge, 573 p.
[4]  Quaas, J. (2012) Evaluating the Critical Relative Humidity as a Measure of Subgrid-Scale Variability of Humidity in General Circulation Model Cloud Cover Parameterizations Using Satellite Data. Journal of Geophysical Research: Atmospheres, 117, D09208. https://doi.org/10.1029/2012JD017495
[5]  Findell, K.L. and Eltahir, A.B. (2003) Atmospheric Controls on Soil Moisture-Boundary Layer Interactions. Part I: Framework Development. Journal of Hydrometeorology, 4, 552-569.
https://doi.org/10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2
[6]  Taylor, C.M. and Ellis, R.J. (2006) Satellite Detection of Soil Moisture Impacts on Convection at the Mesoscale. Geophysical Research Letters, 33, L03404.
https://doi.org/10.1029/2005GL025252
[7]  Laurent, H., D’Amato, N. and Lebel, T. (1998) How Important Is the Contribution of the Mesoscale Convective Complexes to the Sahelian Rainfall. Physics and Chemistry of the Earth, 23, 629-633.
https://doi.org/10.1016/S0079-1946(98)00099-8
[8]  Laing, A.G., Fritsch, J.M. and Negri, A.J. (1999) Contribution of Mesoscale Convective Complexes to Rainfall in Sahelian Africa: Estimates from Geostationary Infrared and Passive Microwave Data. Journal of Applied Meteorology, 38, 957-964.
https://doi.org/10.1175/1520-0450(1999)038<0957:COMCCT>2.0.CO;2
[9]  Bielli, S. and Roca, R. (2010) Scale Decomposition of Atmospheric Water Budget over West Africa during the Monsoon 2006 from NCEP/GFS Analyses. Climate Dynamics, 35, 143-157. https://doi.org/10.1007/s00382-009-0597-5
[10]  Djoufack-Manetsa, V. (2011) étude multi-échelles des précipitations et du couvert végétal au Cameroun: Analyses spatiales, tendances temporelles, facteurs climatiques et anthropiques de variabilité du NDVI. Doctoral Dissertation, Université de Bourgogne; Université de Yaoundé, Yaoundé.
[11]  Stock, R. (2012) Africa South of the Sahara: A Geographical Interpretation. Guilford Press, New York.
[12]  Bouali, L. (2009) Prévisibilité et prévision statistico-dynamique des saisons des pluies associées à la mousson ouest africaine à partir d’ensembles multi-modèles. Doctoral Dissertation, Dijon.
[13]  Sall, S.M., Viltard, A. and Sauvageot, H. (2007) Rainfall Distribution over the Fouta Djallon-Guinea. Atmospheric Research, 86, 149-161.
https://doi.org/10.1016/j.atmosres.2007.03.008
[14]  Mathon, V. and Laurent, H. (2001) Life Cycle of the Sahelian Mesoscale Convective Cloud Systems. Quarterly Journal of the Royal Meteorological Society, 127, 377-406. https://doi.org/10.1002/qj.49712757208
[15]  Kante, I.K., Sall, S.M., Badiane, D. and Diouf, I. (2019) Seasonal Variability of Rainfall and Thunderstorms in Guinea over the Period 1981 to 2010. African Journal of Environment Science and Technology, 13, 324-341.
https://doi.org/10.5897/AJEST2019.2684
https://academicjournals.org/journal/AJEST/article-full-text-pdf/A1BB5D361633
[16]  Frenken, K. (2005) Irrigation in Africa in Figures: AQUASTAT Survey 2005 (Vol. 29). Food & Agriculture Org.
[17]  Sall, S.M., Viltard, A. and Sauvageot, H. (2007) Rainfall Distribution over the Fouta Djallon-Guinea. Atmospheric Research, 86, 149-161.
https://doi.org/10.1016/j.atmosres.2007.03.008
[18]  Béavogui, K., Badiane, D., Sall, S.M. and Diaby, I. (2011) Approche climatologique des phénomènes pluvio-orageux en Guinée. Journal des Sciences Pour l’Ingénieur, 13, 71-77.
[19]  Jenkins, G.S., Pratt, A.S. and Heymsfield, A. (2008) Possible Linkages between Saharan Dust and Tropical Cyclone Rain Band Invigoration in the Eastern Atlantic during NAMMA-06. Geophysical Research Letters, 35, L08815.
https://doi.org/10.1029/2008GL034072
[20]  Mitchell, T.D. and Jones, P.D. (2005) An Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids. International Journal of Climatology: A Journal of the Royal Meteorological Society, 25, 693-712. https://doi.org/10.1002/joc.1181
[21]  Harris, I.P.D.J., Jones, P.D., Osborn, T.J. and Lister, D.H. (2014) Updated High-Resolution Grids of Monthly Climatic Observations: The CRU TS3.10 Dataset. International Journal of Climatology, 34, 623-642.
https://doi.org/10.1002/joc.3711
[22]  Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., De Rosnay, P., et al. (2015) Era Interim/Land: A Global Land Surface Reanalysis Data Set. Hydrology and Earth System Sciences, 19, 389-407.
https://doi.org/10.5194/hess-19-389-2015
[23]  Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kallberg, P., Köhler, M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. and Vitart, F. (2011) The Era Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
https://doi.org/10.1002/qj.828
[24]  Rienecker, M.M., Suarez, M.J., Gelaro, R., Todling, R., Julio, B., Liu, E., Bosilovich, M.G., Schubert, S.D., Takacs, L., Kim, G.K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R.D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C.R., Reichle, R., Robertson, F.R., Ruddick, A.G., Sienkiewicz, M. and Woollen, J. (2011) MERRA-NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate, 24, 3624-3648.
https://doi.org/10.1175/JCLI-D-11-00015.1
[25]  Simmons, A.J., Willett, K.M., Jones, P.D., Thorne, P.W. and Dee, D.P. (2010) Low-Frequency Variations in Surface Atmospheric Humidity, Temperature, and Precipitation: Inferences from Reanalyses and Monthly Gridded Observational Data Sets. Journal of Geophysical Research: Atmospheres, 115, D01110.
https://doi.org/10.1029/2009JD012442
[26]  Berrisford, P., Dee, D.P.K.F., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S. and Uppala, S. (2009) The Era Interim Archive. ERA Report Series, No. 1, 1-16.
[27]  Vesperini, M., Breon, F.M. and Tanre, D. (1999) Atmospheric Water Vapor Content from Spaceborne POLDER Measurements. IEEE Transactions on Geoscience and Remote Sensing, 37, 1613-1619.
https://doi.org/10.1109/36.763275
[28]  Duvel, J.P., Basdevant, C., Bellenger, H., Reverdin, G., Vialard, J. and Vargas, A. (2009) The Aeroclipper: A New Device to Explore Convective Systems and Cyclones. Bulletin of the American Meteorological Society, 90, 63-71.
https://doi.org/10.1175/2008BAMS2500.1
[29]  Chahine, M.T. (1992) The Hydrological Cycle and Its Influence on Climate. Nature, 359, 373-380.
https://doi.org/10.1038/359373a0
[30]  Meynadier, R. (2010) Analyse multi-échelle du cycle de l’eau dans la mousson africaine à l’aide d’observations GPS. Doctoral Dissertation, Université Pierre et Marie Curie-Paris VI, Paris.
[31]  Bock, O., Bouin, M.N., Doerflinger, E., Collard, P., Masson, F., Meynadier, R., Nahmani, S., Koité, M., Gaptia Lawan Balawan, K., Didé, F., Ouedraogo, D., Pokperlaar, S., Ngamini, J.B., Lafore, J.P., Janicot, S., Guichard, F. and Nuret, M. (2008) The West African Monsoon Observed with Ground-Based GPS Receivers during AMMA. Journal of Geophysical Research, 113, D21105.
https://doi.org/10.1029/2008JD010327
[32]  Boudevillain, B., Argence, S., Claud, C., Ducrocq, V., Joly, B., Joly, A., Arbogast, P., et al. (2009) Projet Cyprim, Partie I: Cyclogenèses et précipitations intenses en région méditerranéenne: origines et caractéristiques. La Météorologie, 66, 18-28.
https://doi.org/10.4267/2042/28828
[33]  Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., Liu, P., et al. (2004) Regions of Strong Coupling between Soil Moisture and Precipitation. Science, 305, 1138-1140. https://doi.org/10.1126/science.1100217
[34]  Cadet, D.L. and Nnoli, N.O. (1987) Water Vapour Transport over Africa and the Atlantic Ocean during Summer 1979. Quarterly Journal of the Royal Meteorological Society, 113, 581-602. https://doi.org/10.1002/qj.49711347609
[35]  Long, M., Entekhabi, D. and Nicholson, S.E. (2000) Interannual Variability in Rainfall, Water Vapor Flow, and Vertical Motion over West Africa. Journal of Climate, 13, 3827-3841.
https://doi.org/10.1175/1520-0442(2000)013<3827:IVIRWV>2.0.CO;2
[36]  GarciaCarreras, L. and Parker, D.J. (2011) How Does Local Tropical Deforestation affect Rainfall? Geophysical Research Letters, 38, L19802.
https://doi.org/10.1029/2011GL049099

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133