全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于场景理解的多用户多机器人系统权限访问控制
Permission Access Control for Multi-User and Multi-Robot Systems Based on Scene Recognition

DOI: 10.12677/AIRR.2019.84027, PP. 239-247

Keywords: 机器人,场景理解,权限管理,多用户,机器人云服务
Robot
, Scene Recognition, Authority Management, Multiuser, Robot Cloud Service

Full-Text   Cite this paper   Add to My Lib

Abstract:

伴随着云机器人的发展,机器人能够参与的场景越来越多,互联网的飞速发展,随之而来的是多用户在不同场景下使用机器人构成的隐私威胁。机器人在不同场景下应拥有不同的权限,在保护用户隐私的同时还可以效率最大化地完成任务。为此,场景理解是解决这一问题的基础,通过预先设定不同场景下各用户所拥有的权利与限制,服务器通过机器人拍摄的图片判断机器人所处的场景,从而赋予各用户不同的权限,使机器人听从用户的指令保护隐私。此举的应用为多用户多机器人系统的安全防护方式提供了一种新的思路。
With the development of cloud robots, robots can participate in more and more different scenes. The rapid development of the Internet is followed by the privacy security issues when multiple users use robots in different scenarios. The robot should have different permissions in different scenarios which can maximize the efficiency and protect the user’s privacy. To solve this problem, scene recognition is one way to solve this problem. By pre-setting the rights and restrictions owned by each user in different scenarios, the server determines the scene in which the robot is located by the picture taken by the robot, thereby giving each user different permissions, which allows the robot to listen to the user’s instructions to protect user’s privacy. The application of this method provides a new way of security protection for the multi-user multi-robot system.

References

[1]  李牧, 李成群. 基于机器人发展趋势的研究[J]. 山东工业技术, 2018(24): 230.
[2]  黄天龙. 基于云平台的移动机器人自主控制系统研究[D]: []. 哈尔滨工程大学, 2018.
[3]  周风余, 尹磊, 宋锐, 田天, 陈宏兴. 一种机器人云平台服务构建与调度新方法[J]. 机器人, 2017, 39(1): 89-98.
[4]  周斐, 李锦芝. 基于人工智能的广州市政府智能服务机器人云平台设计及应用[J]. 数字技术与应用, 2018, 36(12): 120-122.
[5]  陈宏兴, 周风余, 田天, 姜志飞, 陈竹敏. 服务机器人云计算平台SOA接口层模型设计[J]. 山东大学学报(工学版), 2015, 45(4): 31-39.
[6]  龙慧, 朱定局, 田娟. 深度学习在智能机器人中的应用研究综述[J]. 计算机科学, 2018, 45(S2): 43-47+52.
[7]  邓畅. 基于ROS的云机器人系统设计与实现[J]. 上海工程大学报, 2018, 32(4): 319-323.
[8]  Lin, T.-Y., et al. (2014) Microsoft Coco: Common Objects in Context. European Conference on Computer Vision, Springer, Cham, 740-755.
https://doi.org/10.1007/978-3-319-10602-1_48
[9]  Zhou, B.L., et al. (2017) Scene Parsing through ade20k Dataset. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 5122-5230.
https://doi.org/10.1109/CVPR.2017.544
[10]  Mottaghi, Roozbeh, et al. (2014) The Role of Context for Object Detection and Semantic Segmentation in the Wild. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 891-898.
https://doi.org/10.1109/CVPR.2014.119
[11]  张继鑫, 武延军. 基于ROS的服务机器人云端协同计算框架[J]. 计算机系统用, 2016, 25(9): 85-91.
[12]  陈贤, 武延军. 基于ROS的云机器人服务框架[J]. 计算机系统应用, 2016, 25(10): 73-80.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133