全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

First Evaluation of Zygomaticus Major Muscle Elastic Properties Using a US Elastography Technique

DOI: 10.4236/jbise.2019.1211037, PP. 459-468

Keywords: Facial Muscle, Shear Wave Elastography, Zygomaticus Major, Texture Analysis, Ultrasound

Full-Text   Cite this paper   Add to My Lib

Abstract:

Facial expressions are linked to movements of muscles, which can be altered by pathological diseases. Assessment of facial muscle deficits is subjective (palpation) and operator-dependent, and these deficits are currently estimated with clinical scales. Thus, the quantification of facial muscle elastic properties is a key for the clinical adaption and evaluation of treatments for facial paralysis. We herein present a novel application of shear wave elastography (SWE) based on an ultrasound protocol to assess the morphological (thickness and texture) and elastic (Young’s modulus) properties of the zygomaticus major (ZM) muscle. Fifteen healthy volunteers underwent SWE tests, and the ultrasound acquisitions were obtained using a new linear transducer (SLH20-6, spatial resolution: 38 μm) and compared to those obtained using an SL10-2 probe (spatial resolution: 50 μm). The probe position was placed along the muscle fiber orientation. A semi-automatic method was developed to quantify the ZM muscle elasticity, and the repeatability was analyzed at one-week intervals. The mean elasticity for the two probes was about 15 kPa. The SLH20-6 probe yielded a higher mean elasticity (approximately 6 kPa) and less homogeneous echogenicity than the SL10-2 probe. Two distinct groups of texture profiles as a function of the transducer were obtained. This study will provide some guidance for clinical practices and will allow the construction of a reference database that could be used to evaluate treatments and develop numerical models of facial expression.

References

[1]  Devauchelle, B., Badet, L., Lengelé, B., Morelon, E., Testelin, S., Michallet, M., D’Hauthuille, C. and Dubernard, J.-M. (2006) First Human Face Allograft: Early Report. The Lancet, 368, 203-209.
https://doi.org/10.1016/S0140-6736(06)68935-6
[2]  Kanerva, M., Poussa, T. and Pitkäranta, A. (2006) Sunnybrook and House-Brackmann Facial Grading Systems: Intrarater Repeatability and Interrater Agreement. Otolaryngology-Head and Neck Surgery, 135, 865-871.
https://doi.org/10.1016/j.otohns.2006.05.748
[3]  Schumann, N.P., Bongers, K., Guntinas-Lichius, O. and Scholle, H.C. (2010) Facial Muscle Activation Patterns in Healthy Male Humans: A Multi-Channel Surface EMG Study. Journal of Neuroscience Methods, 187, 120-128.
https://doi.org/10.1016/j.jneumeth.2009.12.019
[4]  Lapatki, B.G., Stegeman, D.F. and Jonas, I.E. (2003) A Surface EMG Electrode for the Simultaneous Observation of Multiple Facial Muscles. Journal of Neuroscience Methods, 123, 117-128.
https://doi.org/10.1016/S0165-0270(02)00323-0
[5]  Eskes, M., Balm, A.J., Van Alphen, M.J., Smeele, L.E., Stavness, I. and Van Der Heijden, F. (2017) sEMG-Assisted Inverse Modelling of 3D Lip Movement: A Feasibility Study towards Person-Specific Modelling. Scientific Reports, 7, 17729.
https://doi.org/10.1038/s41598-017-17790-4
[6]  Neely, J. G., Cheung, J.Y., Wood, M., Byers, J. and Rogerson, A. (1992) Computerized Quantitative Dynamic Analysis of Facial Motion in the Paralyzed and Synkinetic Face. The American Journal of Otology, 13, 97-107.
[7]  Linstrom, C.J., Silverman, C.A. and Susman, W.M. (2000) Facial-Motion Analysis with a Video and Computer System: A Preliminary Report. Otology & Neurotology, 21, 123-129.
https://doi.org/10.1016/S0196-0709(00)80086-1
[8]  Ben Mansour, K., Sarhan, F.R., Neiva, C., Godard, C., Devauchelle, B., Marin, F. and Dakpé, S. (2014) Analysis of Mimic Facial Movements Based on Motion Capture. Computer Methods in Biomechanics and Biomedical Engineering, 17, 78-79.
https://doi.org/10.1080/10255842.2014.931142
[9]  Volk, G.F., Pohlmann, M., Sauer, M., Finkensieper, M. and Guntinas-Lichius, O. (2014) Quantitative Ultrasonography of Facial Muscles in Patients with Chronic Facial Palsy. Muscle & Nerve, 50, 358-365.
https://doi.org/10.1002/mus.24154
[10]  McAlister, R.W., Harkness, E.M. and Nicoll, J.J. (1998) An Ultrasound Investigation of the Lip Levator Musculature. The European Journal of Orthodontics, 20, 713-720.
https://doi.org/10.1093/ejo/20.6.713
[11]  Ariji, Y., Nakayama, M., Nishiyama, W., Nozawa, M. and Ariji, E. (2015) Shear-Wave Sonoelastography for Assessing Masseter Muscle Hardness in Comparison with Strain Sonoelastography: Study with Phantoms and Healthy Volunteers. Dentomaxillofacial Radiology, 45, 20150251.
https://doi.org/10.1259/dmfr.20150251
[12]  Ariji, Y., Nakayama, M., Nishiyama, W. and Ariji, E. (2014) Applications of Sonographic Elastography to the Oral and Maxillofacial Region. Journal of Radiology & Radiation Therapy, 2, 1049.
[13]  Bercoff, J., Tanter, M. and Fink, M. (2004) Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 51, 396-409.
https://doi.org/10.1109/TUFFC.2004.1295425
[14]  Tanter, M., Bercoff, J., Athanasiou, A., Deffieux, T., Gennisson, J.-L., Montaldo, G., Muller, M., Tardivon, A. and Fink, M. (2008) Quantitative Assessment of Breast Lesion Viscoelasticity: Initial Clinical Results Using Supersonic Shear Imaging. Ultrasound in Medicine & Biology, 34, 1373-1386.
https://doi.org/10.1016/j.ultrasmedbio.2008.02.002
[15]  Kim, H.J., Kim, S.M., Kim, B., Yun, B.L., Jang, M., Ko, Y., Lee, S.H., Jeong, H., Chang, J.M. and Cho, N. (2018) Comparison of Strain and Shear Wave Elastography for Qualitative and Quantitative Assessment of Breast Masses in the Same Population. Scientific Reports, 8, 1-11.
https://doi.org/10.1038/s41598-018-24377-0
[16]  Ewertsen, C., Carlsen, J., Perveez, M.A. and Schytz, H. (2018) Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals. Ultrasound International Open, 4, E23-E29.
https://doi.org/10.1055/s-0044-102013
[17]  Herman, J., Sedlackova, Z., Vachutka, J., Furst, T., Salzman, R. and Vomacka, J. (2017) Shear Wave Elastography Parameters of Normal Soft Tissues of the Neck. Biomedical Papers, 161, 320-325.
https://doi.org/10.5507/bp.2017.024
[18]  Dieterich, A.V. andrade, R.J., Le Sant, G., Falla, D., Petzke, F., Hug, F. and Nordez, A. (2017) Shear Wave Elastography Reveals Different Degrees of Passive and Active Stiffness of the Neck Extensor Muscles. European Journal of Applied Physiology, 117, 171-178.
https://doi.org/10.1007/s00421-016-3509-5
[19]  Liu, K.H., Bhatia, K., Chu, W., He, L.T., Leung, S.F. and Ahuja, A.T. (2015) Shear Wave Elastography—A New Quantitative Assessment of Post-Irradiation Neck Fibrosis. Ultraschall in der Medizin, 36, 348-354.
https://doi.org/10.1055/s-0034-1366364
[20]  Mantsopoulos, K., Klintworth, N., Iro, H. and Bozzato, A. (2015) Applicability of Shear Wave Elastography of the Major Salivary Glands: Values in Healthy Patients and Effects of Gender, Smoking and Pre-Compression. Ultrasound in Medicine & Biology, 41, 2310-2318.
https://doi.org/10.1016/j.ultrasmedbio.2015.04.015
[21]  Bhatia, K., Tong, C.S.L., Cho, C.C.M., Yuen, E.H.Y., Lee, J. and Ahuja, A.T. (2012) Reliability of Shear Wave Ultrasound Elastography for Neck Lesions Identified in Routine Clinical Practice. Ultraschall in der Medizin, 33, 463-468.
https://doi.org/10.1055/s-0032-1325428
[22]  Habibi, H.A., Durmaz, E.S.M., Qarayeva, V., Kandemirli, S.G., Kalyoncu Ucar, A., Aslan, M., Apaydin, G., Kurugoglu, S. and Adaletli, I. (2018) Quantitative Assessment of Thyroid, Submandibular and Parotid Glands Elasticity with Shear-Wave Elastography in Children. Ultrasound Quarterly, 34, 58-61.
https://doi.org/10.1097/RUQ.0000000000000352
[23]  Schneider, C.A., Rasband, W.S. and Eliceiri, K.W. (2012) NIH Image to ImageJ: 25 Years of Image Analysis. Nat Methods, 9, 671-675.
https://doi.org/10.1038/nmeth.2089
[24]  Szczypiński, P.M., Strzelecki, M., Materka, A. and Klepaczko, A. (2009) MaZda—A Software Package for Image Texture Analysis. Computer Methods and Programs in Biomedicine, 94, 66-76.
https://doi.org/10.1016/j.cmpb.2008.08.005
[25]  Schürmann, J. (1996) Pattern Classification: A Unified View of Statistical and Neural Approaches. Wiley, New York, 1-17.
[26]  SuperTransducersTM Brochure, Supersonic Imagine (2015) Aixplorer.
[27]  Dao, T.T., Dakpé, S., Pouletaut, P., Devauchelle, B. and Ho Ba Tho, M.C. (2013) Facial Mimics Simulation Using MRI and Finite Element Analysis. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2013, 4585-4588.
[28]  Fan, A.-X., Dakpé, S., Dao, T.T., Pouletaut, P., Rachik, M. and Tho, M.C.H.B. (2017) MRI-Based Finite Element Modeling of Facial Mimics: A Case Study on the Paired Zygomaticus Major Muscles. Computer Methods in Biomechanics and Biomedical Engineering, 20, 919-928.
https://doi.org/10.1080/10255842.2017.1305363
[29]  Arda, K., Ciledag, N., Aktas, E., Arıbas, B.K. and Köse, K. (2011) Quantitative Assessment of Normal Soft-Tissue Elasticity Using Shear-Wave Ultrasound Elastography. American Journal of Roentgenology, 197, 532-536.
https://doi.org/10.2214/AJR.10.5449
[30]  Franchi-Abella, S., Elie, C. and Correas, J.-M. (2017) Performances and Limitations of Several Ultrasound-Based Elastography Techniques: A Phantom Study. Ultrasound in Medicine & Biology, 43, 2402-2415.
https://doi.org/10.1016/j.ultrasmedbio.2017.06.008
[31]  Palmer, B.M., Tanner, B.C.W., Toth, M.J. and Miller, M.S. (2013) An Inverse Power-Law Distribution of Molecular Bond Lifetimes Predicts Fractional Derivative Viscoelasticity in Biological Tissue. Biophysical Journal, 104, 2540-2552.
https://doi.org/10.1016/j.bpj.2013.04.045
[32]  Gennisson, J.-L., Deffieux, T., Macé, E., Montaldo, G., Fink, M. and Tanter, M. (2010) Viscoelastic and Anisotropic Mechanical Properties of in Vivo Muscle Tissue Assessed by Supersonic Shear Imaging. Ultrasound in Medicine & Biology, 36, 789-801.
https://doi.org/10.1016/j.ultrasmedbio.2010.02.013
[33]  Esteve-Altava, B., Diogo, R., Smith, C., Boughner, J.C. and Rasskin-Gutman, D. (2015) Anatomical Networks Reveal the Musculoskeletal Modularity of the Human Head. Scientific Reports, 5, 8298.
https://doi.org/10.1038/srep08298

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133