Let f be a meromorphic function in C. If the order of f is greater than 2,has finitely many zeros and f takes a non-zero finite value finitely times, and then ?is unbounded.
References
[1]
Bergweiler, W. (2001) Normality and Exceptional Values of Derivatives. Proceedings of the American Mathematical Society, 129, 121-129.
https://doi.org/10.1090/S0002-9939-00-05477-0
[2]
Chang, J.M. (2012) On Meromorphic Functions Whose First Derivatives Have Finitely Many Zeros. Bulletin of the London Mathematical Society, 44, 703-715.
https://doi.org/10.1112/blms/bds003
[3]
Ahlfors, L. (1929) Beiträge zur Theorie der Meromorphen Funktionen. C.R.7e Congr.Math., Scand.Oslo, 19, 84-88.
[4]
Pang, X.C. and Zalcman, L. (2000) Normal Families and Shared Values. Bulletin of the London Mathematical Society, 32, 325-331.
https://doi.org/10.1112/S002460939900644X
[5]
Zaclman, L. (1975) A Heuristic Principle in Complex Function Theory. The American Mathematical Monthly, 82, 813-817.
https://doi.org/10.1080/00029890.1975.11993942
[6]
Pang, X.C. (1989) Bloch’s Principle and Normal Criterion. Science in China Series A, 32, 782-791.
[7]
Pang, X.C. (1990) On Normal Criterion of Meromorphic Functions. Science in China Series A, 33, 521-527. https://doi.org/10.1360/ya1990-33-5-521
[8]
Clunie, J. and Hayman, W.K. (1966) The Spherical Derivative of Integral and Meromorphic Functions. Commentarii Mathematici Helvetici, 40, 117-148.
https://doi.org/10.1007/BF02564366