全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解云计算资源调度的免疫算法
Research on Resource Scheduling Model and Algorithms of Cloud Computing

DOI: 10.12677/ORF.2019.94036, PP. 307-312

Keywords: 云计算,免疫算法,任务调度
Cloud Computing
, Immune Algorithm, Task Scheduling

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着信息社会的飞速发展,云计算不断渗入各界领域,成为处理海量信息数据的主要方式。任务调度问题是云计算研究的核心,其算法的效率对平台用户任务的执行效率和系统资源的使用效率起着决定性作用。本文针对云计算的资源调度问题,提出了一种基于人工免疫理论的云计算动态的任务调度算法。实验结果表明,本文提出的免疫算法能够有效提高云计算资源调度的效率。
With the rapid development of the information society, cloud computing has been infiltrating into all walks of life, becoming the main way to deal with massive information data. Task scheduling is the core of cloud computing research, and the efficiency of its algorithm plays a decisive role in the execution efficiency of platform users’ tasks and the utilization efficiency of system resources. Aiming at the resource scheduling problem of cloud computing, this paper proposes a dynamic task scheduling algorithm based on artificial immune theory for cloud computing. The experimental results show that the immune algorithm is able to effectively improve the efficiency of cloud computing resource scheduling.

References

[1]  程克非, 罗江华, 兰文富, 刘锐. 云计算基础教程[M]. 北京: 人民邮电出版社, 2018.
[2]  王磊, 潘进, 焦李成. 免疫算法[J]. 电子学报, 2008, 28(7): 74-78.
[3]  Burnet, F.M. (1959) The Clonal Selection Theory of Acquired Im-munity. Cambridge University Press, Cambridge.
[4]  陈仁. 免疫学基础[M]. 北京: 人民卫生出版社, 1982.
[5]  Bersini, H. and Varela, F. (1990) Hints for Adaptive Problem Solving Gleaned from Immune Network. The Proceedings of the Workshop on Parallel Problem Solving from Nature, Dortmund, 1990, 343-354.
[6]  Cooke, D.E. and Hunt, J.E. (year) Recognizing Promoter Sequences Using an Artificial Immune System. Proceedings Intelligent Systems in Molecular Biology, Cambridge, 1995, 89-97.
[7]  Toma, N., Endo, S., Yamada, K., et al. (2000) The Im-mune Distributed Competitive Problem Solver with Major Histocompatibility Complex and Immune Network. The Conference on Systems, Man and Cybernetics, Nashville, 2000: 1865-1870.
[8]  Coello, C.A. and Cortes, N.C. (2002) An Approach to Solve Multi-Objective Optimization Problem Based on an Artificial Immune System. Proceedings of the First International Conference on Artificial Immune System, Inglaterra, 2002, 212-221.
[9]  Xu, J. and Fortes, J. (2010) Multi-Objective Virtual Machine Placement in Virtualized Data Environments. Proceedings of 2010 IEEE/ACM International Conference on Green Computing and Communications, Hangzhou, 18-20 December 2010, 179-188.
https://doi.org/10.1109/GreenCom-CPSCom.2010.137
[10]  杨镜, 吴磊, 吴德安, 王晓敏, 刘念伯. 云平台下动态任务调度人工免疫算法[J]. 计算机应用, 2014, 34(2): 351-356.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133