全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preparation of the Rutin-SBA-16 Drug Delivery System

DOI: 10.4236/jbnb.2020.111001, PP. 1-13

Keywords: Rutin, Controlled Release Systems, Kinetic Study, Mesoporous Silica, Flavonoid

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study sets out a scheme for a controlled release delivery system using SBA-16 as a carrier matrix and Rutin as a drug (Rutin-SBA-16). Physicochemical characterizations were performed to confirm the structure of the SBA-16 for post-synthesis by scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD). The presence of Rutin-SBA-16 was confirmed by Fourier-transform infrared spectroscopy (FTIR) and Nitrogen adsorption-desorption isotherms at 77 K. The dissolution kinetics was evaluated by the Zero Order, First Order and Higuchi models, and Rutin quantification was carried out by High Performance Liquid Chromatography (HPLC). The best impregnation time, which was 8 hours, adsorbing 284 μg Rutin per mg of silica, and the maximum degree of dissolution occurred in a period of 20 - 25 h. The release kinetics of the Rutin was called Higuchi, and showed high linearity, with a correlation coefficient (R2) of 0.999 compared with 0.905 and 0.980 of the zero order and first order models respectively. The study shows the benefits of Rutin-SBA-16 as a drug delivery system.

References

[1]  Koziolek, M., Grimm, M., Schneider, F., Jedamzik, P., Sager, M., Kühn, J.P., Siegmund, W. and Weitschies, W. (2016) Navigating the Human Gastrointestinal Tract for Oral Drug Delivery: Uncharted Waters and New Frontiers. Advanced Drug Delivery Reviews, 101, 75-88.
https://doi.org/10.1016/j.addr.2016.03.009
[2]  Gouda, R., Baishaya, H. and Qing, Z. (2017) Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. Journal of Developing Drugs, 6, 1-8.
https://doi.org/10.4172/2329-6631.1000171
[3]  Peppas, N.A. (1989) Pharmaceutics: The Science of Dosage Form Design. Journal of Controlled Release, 8, 275-276.
https://doi.org/10.1016/0168-3659(89)90050-3
[4]  Dolmans, D.E.J.G.J., Fukumura, D. and Jain, R.K. (2003) Photodynamic Therapy for Cancer. Nature Reviews Cancer, 3, 380-387.
https://doi.org/10.1038/nrc1071
[5]  Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R.W., Alvar, J. and Boelaert, M. (2007) Visceral Leishmaniasis: What Are the Needs for Diagnosis, Treatment and Control. Nature Reviews Microbiology, 5, 873-882.
https://doi.org/10.1038/nrmicro1748
[6]  Liu, J., Sonshine, D.A., Shervani, S. and Hurt, R.H. (2010) Controlled Release of Biologically Active Silver from Nanosilver Surfaces. ACS Nano, 4, 6903-6913.
https://doi.org/10.1021/nn102272n
[7]  Anal, A.K., Bhowmik, D., Gopinath, H., Kumar, B.P., Duraivel, S., Kumar, K.P.S., Borkow, G., Gabbay, J., Zatcoff, R.C., Costa, P., Sousa Lobo, J.M., Higuch, W.I., Sciences, H., Dash, S., Murthy, P.N., Nath, L., Chowdhury, P., Shaikh, H.K., Kshirsagar, R.V., Patil, S.G., Tian, X., Zhang, Z., Wang, S., Diao, Y., Zhao, Z., Lv. D., Ummadi, S., Shravani, B., Rao, N.G.R., Reddy, M.S., Sanjeev, B., Taghizadeh, S.M., Soroushnia, A. and Mohamadnia, F. (2013) Overview on Controlled Release Dosage Forms. International Journal of Pharma Sciences, 3, 258-269.
https://doi.org/10.1063/1.5030284
[8]  Slowing, I., Viveroescoto, J., Wu, C. and Lin, V. (2008) Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers. Advanced Drug Delivery Reviews, 60, 1278-1288.
https://doi.org/10.1016/j.addr.2008.03.012
[9]  Kushal, M., Monali, M., Durgavati, M., Mittal, P., Umesh, S. and Pragna. S. (2013) Oral Controlled Release Drug Delivery System: An Overview. International Research Journal of Pharmacy, 4, 70-76.
https://doi.org/10.7897/2230-8407.04312
[10]  Mendes, L.S., Saska, S., Martines, M.A.U. and Marchetto, R. (2013) Nanostructured Materials Based on Mesoporous Silica and Mesoporous Silica/Apatite as Osteogenic Growth Peptide Carriers. Materials Science & Engineering C-Materials for Biological Applications, 33, 4427-4434.
https://doi.org/10.1016/j.msec.2013.06.040
[11]  Ukmar, T. and Planinšek, O. (2010) Ordered Mesoporous Silicates as Matrices for Controlled Release of Drugs. Acta Pharmaceutica, 60, 373-385.
https://doi.org/10.2478/v1007-010-0037-4
[12]  Renuka, N.K., Praveen, A.K. and Anas, K. (2013) Influence of CTAB Molar Ratio in Tuning the Texture of Rice Husk Silica into MCM 41 and SBA-16. Materials Letter, 109, 70-73.
https://doi.org/10.1016/j.matlet.2013.07.074
[13]  Almeida, T.S.D., Guima, K.E., Silveira, R.M., Silva, G.C., Martines, M.A.U. and Martins, C.A. (2017) A Pd Nanocatalyst Supported on Multifaceted Mesoporous Silica with Enhanced Activity and Stability for Glycerol Electrooxidation. RSC Advances, 7, 12006-12016.
https://doi.org/10.1039/C6RA28864B
[14]  Mesa, M., Sierra, L., Patarin, J. and Guth, J.L. (2005) Morphology and Porosity Characteristics Control of SBA-16 Mesoporous Silica. Effect of the Triblock Surfactant Pluronic F127 Degradation during the Synthesis. Solid State Sciences, 7, 990-997.
https://doi.org/10.1016/j.solidstatesciences.2005.04.006
[15]  Stevens, W.J.J., Lebeau, K., Mertens, M., Tendeloo, G.V., Cool, P. and Vansant, E.F. (2006) Investigation of the Morphology of the Mesoporous SBA-16 and SBA-15 Materials. The Journal of Physical Chemistry B, 110, 9183-9187.
https://doi.org/10.1021/jp0548725
[16]  Féres, C.A.O., Madalosso, R.C., Rocha, O.A., Leite, J.P.V., Guimarãesm T.M.D.P., Toledo, V.P.P. and Tagliati, C.A. (2006) Acute and Chronic Toxicological Studies of Dimorphandra mollis in Experimental Animals. Journal of Ethnopharmacology, 108, 450-456.
https://doi.org/10.1016/j.jep.2006.06.002
[17]  Sharma, S., Ali, A., Ali, J., Sahni, J.K. and Baboota, S. (2013) Rutin: Therapeutic Potential and Recent Advances in Drug Delivery. Expert Opinion on Investigational Drugs, 22, 1063-1079.
https://doi.org/10.1517/13543784.2013.805744
[18]  Okano, T., Miyajima, M., Komada, F., Imanidis, G., Nishiyama, S., Kim, S.W. and Higuchi, W.I. (1987) Control of Drug Concentration-Time Profiles in Vivo by Zero-Order Transdermal Delivery Systems. Journal of Controlled Release, 6, 99-106.
https://doi.org/10.1016/0168-3659(87)90067-8
[19]  Hallam, T.G., Clark, C.E. and Jordan, G.S. (1983) Effects of Toxicants on Populations: A Qualitative Approach II. First Order Kinetics. Journal of Mathematical Biology, 18, 25-37.
https://doi.org/10.1007/BF00275908
[20]  Higuchi, T. (1963) Mechanism of Sustained-Action Medication. Theoretical Analysis of Rate of Release of Solid Drugs Dispersed in Solid Matrices. Journal of Pharmaceutical Sciences, 52, 1145-1149.
https://doi.org/10.1002/jps.2600521210
[21]  Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309-319.
https://doi.org/10.1021/ja01269a023
[22]  Lechevallier, S. Jorge, J., Silveira, R.M., Ramond, N.R., Neumeyer, D., Menu, M.J., Gressier, M., Marçal, A.L., Rocha, A.L., Martines, M.A.U., Magdeleine, E., Ghys, J.D. and Verelst, M. (2013) Luminescence Properties of Mesoporous Silica Nanoparticles Encapsulating Different Europium Complexes: Application for Biolabelling. Journal of Nanomaterials, 60, 1-11.
https://doi.org/10.1155/2013/918369
[23]  Andrade, G.F., Soares, D.C.F., Santos, R.G. and Sousa, E.M.B. (2013) Mesoporous silica SBA-16 Nanoparticles: Synthesis, Physicochemical Characterization, Release Profile, and in Vitro Cytocompatibility Studies. Microporous Mesoporous Materials, 168, 102-110.
https://doi.org/10.1007/s10971-017-4557-y
[24]  Feliczak-Guzik, A., Jadach, B., Piotrowska, H., Murias, M., Lulek, J. and Nowak, I. (2016) Synthesis and Characterization of SBA-16 Type Mesoporous Materials Containing Amine Groups. Microporous Mesoporous Materials, 220, 231-238.
https://doi.org/10.1016/j.micromeso.2015.09.006
[25]  Sakamoto, Y., Kaneda, M., Terasaki, O., Zhao, D.Y., Kim, J.M., Stucky, G., Shin, H.J. and Ryoo, R. (2000) Direct Imaging of the Pores and Cages of Three-Dimensional Mesoporous Materials. Nature, 408, 449-453.
https://doi.org/10.1038/35044040
[26]  Jorgetto, A.O., Pereira, S.P., Silva, R.I.V., Saeki, M.J., Martines, M.A.U., Pedrosa, V.A. and Castro, G.R. (2015) Application of Mesoporous SBA-15 Silica Functionalized With 4-Amino-2-Mercaptopyrimidine for the Adsorption of Cu(II), Zn(II), Cd(II), Ni(II), and Pb(II) From Water. Acta Chimica Slovenica, 62, 111-121.
https://doi.org/10.17344/acsi.2014.787
[27]  Berlier, G., Gastaldi, L., Sapino, S., Miletto, I., Bottinelli, E., Chirio, D. and Ugazio, E. (2013) MCM-41 as a Useful Vector for Rutin Topical Formulations: Synthesis, Characterization and Testing. International Journal of Pharmaceutics, 457, 177-186.
https://doi.org/10.1016/j.ijpharm.2013.09.018
[28]  Khan, M.A., Wallace, W.T., Islam, S.Z., Nagpure, S., Strzalka, J., Littleton, J.M., Rankin, S.E. and Knutson, B.L. (2017) Adsorption and Recovery of Polyphenolic Flavonoids Using TiO2-Functionalized Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 9, 32114-32125.
https://doi.org/10.1021/acsami.7b09510
[29]  Berlier, G., Gastaldi, L., Ugazio, E., Miletto, I., Iliade, P., Sapino, S. (2013) Stabilization of Quercetin Flavonoid in MCM-41 Mesoporous Silica: Positive Effect of Surface Functionalization. Journal of Colloid and Interface Science, 393, 109-118.
https://doi.org/10.1016/j.jcis.2012.10.073
[30]  Martines, M.A.U., Davolos. M.R., Jafelicci Jr., M., Souza, D.F. and Nunes, L.A.O. (2008) Cr3+ and Cr4+ Luminescence in Glass Ceramic Silica. Journal of Luminescence, 128, 1787-1790.
https://doi.org/10.1016/j.jlumin.2008.04.011
[31]  Yin, W.-X., Wang, X.-Y., Wang, J.-H., Zhuang, H., Sun, K. and Li, L. (2009) FTIR Study of Rutin, Quercetin and Their Metal Complexes. Journal of China University of Mining and Technology, 38, 884-888.
[32]  Queiroz, D.F., Dadamos, T.R.L., Machado, S.A.S. and Martines, M.A.U. (2018) Electrochemical Determination of Norepinephrine by Means of Modified Glassy Carbon Electrodes with Carbon Nanotubes and Magnetic Nanoparticles of Cobalt Ferrite. Sensors, 18, 1-12.
https://doi.org/10.3390/s18041223
[33]  Souza, E.J., Cristante, V.M., Padilha, P.M., Jorge, S.M.A., Martines, M.A.U., Silva, R.I.V., Carmo, D.R. and Castro, G.R. (2011) Attachment of 2,2-Bipyridine onto a Silica Gel for Application as a Sequestering Agent for Copper, Cadmium and Lead Ions from an Aqueous Medium. Polish Journal of Chemical Technology, 13, 28-33.
https://doi.org/10.2478/v10026-011-0045-2
[34]  Mucientes, A.E. and de la Peña, M.A. (2009) Kinetic Analysis of Parallel-Consecutive First-Order Reactions with a Reversible Step: Concentration-Time Integrals Method. Journal of Chemical Education, 86, 390-392.
https://doi.org/10.1021/ed086p390
[35]  Shah, P.V. and Rajput, S.J. (2017) A Comparative in Vitro Release Study of Raloxifene Encapsulated Ordered MCM-41 and MCM-48 Nanoparticles: A Dissolution Kinetics Study in Simulated and Biorelevant Media. Journal of Drug Delivery Science and Technology, 41, 31-44.
https://doi.org/10.1016/j.jddst.2017.06.015
[36]  Siepmann, J. and Peppasm, N.A. (2011) Higuci Equation: Derivation, Applications, Use and Misuse. International Journal of Pharmaceutics, 418, 6-12.
https://doi.org/10.1016/j.ijpharm.2011.03.051
[37]  Park, K. (2014) Controlled Drug Delivery Systems: Past Forward and Future Back. Journal of Controlled Release, 190, 3-8.
https://doi.org/10.1016/j.jconrel.2014.03.054

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133