全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

工业固废改性高液限黏土路用性能研究
Study on Road Performance of Modified High Liquid Limit Clay by Industrial Solid Waste

DOI: 10.12677/HJCE.2019.88151, PP. 1302-1312

Keywords: 高液限黏土,工业固废,改性剂,界限含水率,CRB,回弹模量
High Liquid Clay
, Industrial Solid Waste Materials, Stabilizer, Limit Moisture Content, CBR, Resilient Modulus

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用大宗工业固废材料脱硫石膏、粉煤灰和固硫灰渣作为原材料,研发了一种SC-1高液限黏土改性剂。基于XRD衍射试验,获得了黄泛区高液限黏土、脱硫石膏、固硫灰渣和粉煤灰的化学成分组成,并提出了工业固废基SC-1改性剂的改性机理,初步验证了SC-1改性剂针对黄泛区高液限黏土的降水效果。基于界限含水率试验,确定了SC-1改性剂的最优掺量为6%,液限和塑性指数分别降低4.06%和6.74%。改性后高液限黏土的CBR值和回弹模量值均有较大提高,可满足重型、特重型交通对路基土的要求。改性后的黄泛区高液限黏土可用于路基填筑,既利用了大宗工业固废,又实现了弃土有效利用,取得了良好的经济效益、社会效益和显著的环保效益。
Stabilizer of high liquid clay named SC-1 was developed in this paper. The stabilizer is made by bulk industrial solid waste materials such as desulfurization gypsum, fly ash and fluidized bed combustion fly ash as raw materials. Based on XRD diffraction test, the chemical compositions of high-liquid limit clay, desulfurized gypsum, fluidized bed combustion fly ash and fly ash in Yellow River floodplain were obtained, and the modification mechanism of SC-1 stabilizer was proposed. The effect of SC-1 stabilizer on high-liquid limit clay in Yellow River floodplain was preliminarily compared and verified. Based on the limit moisture content test, the optimal ratio of SC-1 stabilizer was determined to be 6%, which could reduce the liquid limit and plasticity index by 4.06% and 6.74%. CBR value and resilient modulus of modified clay were both greatly improved, which could satisfy the requirements of subgrade soil for heavy and especially heavy traffic. SC-1 modified high liquid limit clay in the Yellow River floodplain could be used for roadbed filling with significant economic, social and environmental benefits, not only reusing the bulk industrial solid waste, but also realizing the effective utilization of abandoned soil.

References

[1]  中国交通运输部. 公路路基设计规范(JTG D30-2015) [S]. 北京: 人民交通出版社股份有限公司, 2015.
[2]  祝学勇. 湖淤积中高液限粘土压实特性与碾压控制标准研究[D]: [硕士学位论文]. 济南: 山东大学, 2016.
[3]  曾静, 邓志斌, 兰霞, 盛谦. 竹城公路高液限土与红粘土路用性能的试验研究[J]. 岩土力学, 2006, 27(1): 89-92+98.
[4]  陈开圣. 高液限红黏土CBR试验[J]. 公路, 2010(2): 148-151.
[5]  兰恒水, 雷鸣, 肖雁征, 等. 掺砂改良高液限土物理力学特性的试验研究[J]. 南京工程学院学报(自然科学版), 2016, 14(4): 65-69.
[6]  李秉宜, 宣剑裕, 郑文斌, 等. 改良高液限黏土水稳定性试验研究[J]. 四川大学学报(工程科学版), 2016, 48(4): 54-60.
[7]  李方华. 高液限土填料改良的最佳掺砂砾石比试验研究[J]. 岩土力学, 2010, 31(3): 785-788.
[8]  赵明纲. 石灰改良高液限土机理分析[D]: [硕士学位论文]. 长沙: 长沙理工大学, 2014.
[9]  郭国和. 水泥改良高液限土工程特性试验研究[J]. 交通科技, 2014(1): 92-95.
[10]  张麒蛰. 高液限红粘土路基修筑技术探讨[J]. 水利与建筑工程学报, 2007(1): 83-85.
[11]  柳厚祥, 余志江, 李宁, 廖雪. 高液限土工程特性改良的试验研究[J]. 西安理工大学学报, 2008, 24(2): 144-148.
[12]  陆益成. 高液限粘土石灰改良强度特征与应用[J]. 公路交通科技(应用技术版), 2009, 5(12): 80-82.
[13]  李光, 蒋理珍, 刘银生. 高液限粘土的石灰改良填筑技术研究[J]. 湖南交通科技, 2003, 29(4): 31-32.
[14]  CelalTonoz, M., Ulusay, R. and Gokceoglu, C. (2004) Effects of Lime Stabilization on Engineering Properties of Expansive Ankara Clay. Lecture Notes in Earth Sciences, 104, 466-474.
https://doi.org/10.1007/978-3-540-39918-6_53
[15]  Thompson, M.R. (1966) Lime-Reactivity of Illinois Soils. Proceedings of the ASCE. Journal of Soil Mechanics and Foundation Division, 92, 67-92.
[16]  刘清秉, 项伟, 崔德山, 等. 离子土固化剂改良膨胀土的机理研究[J]. 岩土工程学报, 2011, 33(4): 648-654.
[17]  郭乾, 魏明俐, 杜广印, 等. AMC固化高液限黏土的强度及孔隙特征研究[J]. 中国矿业大学学报, 2018, 47(4): 838-845.
[18]  中国交通运输部公路科学研究院. 公路土工试验规程(JTG E40-2007) [S]. 北京: 人民交通出版社股份有限公司, 2007.
[19]  朱盛, 邹维列, 贺扬, 等. 固化作用下高液限黏土的击实特性与减水效果[J]. 武汉大学学报(工学版), 2017, 50(6): 855-859.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133