全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Finance  2019 

基于集成学习的房租预测研究
Research of Prediction on House Rent Based on Intergration Learning

DOI: 10.12677/FIN.2019.96065, PP. 586-594

Keywords: 集成学习,房租预测,随机森林,极端随机森林
Integrated Learning
, Rent Forecast, Random Forest, Extra-Trees

Full-Text   Cite this paper   Add to My Lib

Abstract:

住房租赁市场的快速发展使得人们对房屋租赁信息的需求不断增加,对房屋租金关注持续变高。租房市场供给两端一直存在着信息不对称的问题,房租是由诸多方面因素共同决定的,而现有的基于单一算法的房租预测模型,其预测精度往往受模型性能好坏、噪声、以及过度拟合风险等因素影响。本文基于堆叠集成策略,融合Random Forest Regressor、Extra Trees Regressor、LightGBM三个基模型,建立了集成学习的房租预测模型。研究结果表明,本方法预测精度明显优于任一单一预测模型,提高了预测的准确性和稳定性,证实了该模型在房租预测上的有效性。
The rapid development of the housing rental market has led to an increasing demand for housing rental information. There is always a problem of information asymmetry at both ends of the rental market. The rent is determined by many factors together. Accuracy of a single prediction model is unstable and is often affected by factors such as model performance, noise, and over-fitting risk. This study aims to develop and evaluate models of rental market dynamics using stacking integra-tion strategy on data from the DC competition community. We use the three basic models of Ran-dom Force Regressor, Extra Trees Regressor and LightGBM and establish a rent prediction model for integrated learning. The experimental results show that the prediction accuracy of this method is obviously better than any single prediction model, which improves the accuracy and stability of the prediction, and confirms the validity of the model in rent prediction.


References

[1]  中国软件行业协会培训中心. 2018年全国大学生计算机技能应用大赛[EB/OL]. http://www.cnccac.com/, 2018-8-20.
[2]  郑文娟. 中国城市住房价格与住房租金的影响因素及相互关系研究[D]: [博士学位论文]. 浙江: 浙江大学, 2011.
[3]  陈思翀, 陈英楠. 中国住房市场波动的影响因素研究——基于租金收益率的方差分解[J]. 金融研究, 2019, 464(2): 140-157.
[4]  Li, J.Z. (2018) Monthly Housing Rent Forecast Based on LightGBM (Light Gradient Boosting) Model. In-ternational Journal of Intelligent Information and Management Science, 7, 6.
[5]  Ma, Y., Zhang, Z., Ihler, A. and Pan, B. (2018) Estimating Warehouse Rental Price Using Machine Learning Techniques. International Journal of Computers Com-munications & Control, 13, 235-250
https://doi.org/10.15837/ijccc.2018.2.3034
[6]  Wang, J.J., Hu, S.G., Zhan, X.T., et al. (2018) Predicting House Price with a Memristor-Based Artificial Neural Network. IEEE Access, 6, 6.
https://doi.org/10.1109/ACCESS.2018.2814065
[7]  Mu, J., Wu, F. and Zhang, A. (2014) Housing Value Forecasting Based on Machine Learning Methods. Abstract and Applied Analysis, 2014, Article ID: 648047.
https://doi.org/10.1155/2014/648047
[8]  李春生, 李霄野, 张可佳. 基于遗传算法改进的BP神经网络房价预测分析[J]. 计算机技术与发展, 2018, 28(8): 144-147.
[9]  Noor, K. and Jan, S. (2017) Vehicle Price Prediction System Using Machine Learning Techniques. International Journal of Computer Applications, 167, 27-31.
https://doi.org/10.5120/ijca2017914373

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133