全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Game Chromatic Number of Some Regular Graphs

DOI: 10.4236/ojdm.2019.94012, PP. 159-164

Keywords: Game Chromatic Number, Circulant Graph, Generalized Petersen Graphs

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let G be a graph and k be a positive integer. We consider a game with two players Alice and Bob who alternate in coloring the vertices of G with a set of k colors. In every turn, one vertex will be chosen by one player. Alice’s goal is to color all vertices with the k colors, while Bob’s goal is to prevent her. The game chromatic number denoted by?χg(G), is the smallest k such that Alice has a winning strategy with k colors. In this paper, we determine the game chromatic number?χg of circulant graphs?Cn(1,2), \"\" , and generalized Petersen graphs GP(n,2), GP(n,3).

References

[1]  Bodlaender, H.L. (1991) On the Complexity of Some Coloring Games. In: Möhring, R.H., Ed., Graph Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, Vol. 484, Springer-Verlag, Berlin, New York, 30-40.
https://doi.org/10.1007/3-540-53832-1_29
[2]  Raspaud, A. and Wu, J. 2009) Game Chromatic Number of Toroidal Grids. Information Processing Letters, 109, 1183-1186.
https://doi.org/10.1016/j.ipl.2009.08.001
[3]  Dantas, S., de Figueiredo, C.M.H., Mazzuoccolo, G., Preissmann, M., dos Santos, V.F. and Sasaki, D. (2016) On the Total Coloring of Generalized Petersen Graphs. Discrete Mathematics, 339, 1471-1475.
https://doi.org/10.1016/j.disc.2015.12.010
[4]  Heuberger, C. (2003) On Planarity and Colorability of Circulant Graphs. Discrete Mathematics, 268, 153-169.
https://doi.org/10.1016/S0012-365X(02)00685-4
[5]  Faigle, U., Kern, U., Kierstead, H.A. and Trotter, W.T. (1993) On the Game Chromatic Number of Some Classes of Graphs. Ars Combinatoria, 35, 143-150.
[6]  Bartnicki, T., Brešar, B., Grytczuk, J., Kovše, M., Miechowicz, Z. and Peterin, I. (2008) Game Chromatic Number of Cartesian Product Graphs. The Electronic Journal of Combinatorics, 15, 13.
[7]  Destacamento, C.J., Rodriguez, A.D. and Ruivivar, L.A. (2014) The Game Chromatic Number of Some Classes of Graphs. DLSU Research Congress, De La Salle University, Manila, Philippines.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133