全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Development of Predictive QSPR Model of the First Reduction Potential from a Series of Tetracyanoquinodimethane (TCNQ) Molecules by the DFT (Density Functional Theory) Method

DOI: 10.4236/cc.2019.74009, PP. 121-142

Keywords: Tetracyanoquinodimethane, First Reduction Potential, QSPR, Statistical Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this work, which consisted to develop a predictive QSPR (Quantitative Structure-Property Relationship) model of the first reduction potential, we were particularly interested in a series of forty molecules. These molecules have constituted our database. Here, thirty molecules were used for the training set and ten molecules were used for the test set. For the calculation of the descriptors, all molecules have been firstly optimized with a frequency calculation at B3LYP/6-31G(d,p) theory level. Using statistical analysis methods, a predictive QSPR (Quantitative Structure-Property Relationship) model of the first reduction potential dependent on electronic affinity (EA) only have been developed. The statistical and validation parameters derived from this model have been determined and found interesting. These different parameters and the realized statistical tests have revealed that this model is suitable for predicting the first reduction potential of future TCNQ (tetracyanoquinodimethane) of this same family belonging to its applicability domain with a 95% confidence level.

References

[1]  Prasad, P.N. and Ulrich, D.R. (1988) Nonlinear Optical and Electroactive Polymers. Springer, Boston, 444 p.
https://doi.org/10.1007/978-1-4613-0953-6
[2]  Cuevas, J.C. and Scheer, E. (2010) Molecular Electronics: An Introduction to Theory and Experiment. World Scientific Publishing Co. Pte. Ltd., Singapore, 709 p.
https://doi.org/10.1142/7434
[3]  Joran, A.D., et al. (1987) Effect of Exothermicity on Electron Transfer Rates in Photosynthetic Molecular Models. Nature, 327, 508-511.
https://doi.org/10.1038/327508a0
[4]  Shen, X.Y., et al. (2013) Effects of Substitution with Donor-Acceptor Groups on the Properties of Tetraphenylethene Trimer: Aggregation-Induced Emission, Solvatochromism, and Mechanochromism. The Journal of Physical Chemistry, 117, 7334-7347.
https://doi.org/10.1021/jp311360p
[5]  Marcus, R.A. (1993) Electron Transfer Reactions in Chemistry. Theory and Experiment. Reviews of Modern Physics, 65, 599-610.
https://doi.org/10.1103/RevModPhys.65.599
[6]  Klots, C.E., Compton, R.N. and Raaen, V.F. (1974) Electronic and Ionic Properties of Molecular TTF and TCNQ. The Journal of Chemical Physics, 60, 1177-1178.
https://doi.org/10.1063/1.1681130
[7]  Milián, B., Pou-Amérigo, R., Viruela, R. and Ortí, E. (2004) On the Electron Affinity of TCNQ. Chemical Physics Letters, 391, 148-151.
https://doi.org/10.1016/j.cplett.2004.04.102
[8]  Zhu, G.Z. and Wang, L.S. (2015) Communication: Vibrationally Resolved Photoelectron Spectroscopy of the Tetracyanoquinodimethane (TCNQ) Anion and Accurate Determination of the Electron Affinity of TCNQ. The Journal of Chemical Physics, 143, Article ID: 221102.
https://doi.org/10.1063/1.4937761
[9]  Pålsson, L.O., et al. (2003) Orientation and Solvatochromism of Dyes in Liquid Crystals. Molecular Crystals and Liquid Crystals, 402, 43-53.
https://doi.org/10.1080/744816685
[10]  Bloor, D., et al. (2001) Matrix Dependence of Light Emission from TCNQ Adducts. Journal of Materials Chemistry, 11, 3053-3062.
https://doi.org/10.1039/b104992p
[11]  Cole, J.M., et al. (2002) Charge-Density Study of the Nonlinear Optical Precursor DED-TCNQ at 20 K. Physical Review B, 65, Article ID: 125107.
https://doi.org/10.1103/PhysRevB.65.125107
[12]  Bando, P., et al. (1994) Single-Component Donor-Acceptor Organic Semiconductors Derived from TCNQ. The Journal of Organic Chemistry, 59, 4618-4629.
https://doi.org/10.1021/jo00095a042
[13]  Arena, A., Patanè, S. and Saitta, G. (1988) Study of a New Organic Semiconductor Based on TCNQ and of Its Junction with Doped Silicon (TCNQ = 7, 7’8, 8’ Tetracyanoquinodimethane). Il Nuovo Cimento, 20, 907-913.
https://doi.org/10.1007/BF03185493
[14]  Wheland, R.C. (1976) Correlation of Electrical Conductivity in Charge-Transfer Complexes with Redox Potentials, Steric Factors, and Heavy Atom Effects. Journal of the American Chemical Society, 98, 3926-3930.
https://doi.org/10.1021/ja00429a031
[15]  Règlement (CE) n° 1907/2006 du Parlement Européen et du Conseil du 18 décembre 2006 concernant l’enregistrement, l’évaluation et l’autorisation des substances chimiques, ainsi que les restrictions applicables à ces substances (REACH), instituant une agence européenne des produits chimiques, modifiant la directive 1999/45/CE et abrogeant le règlement (CEE) n° 793/93 du Conseil et le règlement (CE) n° 1488/94 de la Commission ainsi que la directive 76/769/CEE du Conseil et les directives 91/155/CEE, 93/67/CEE, 93/105/CE et 2000/21/CE de la Commission.
[16]  Margossian, N. (2008) Le règlement REACH—La règlementationeuropéenne sur les produits chimiques. Dunod/L’Usine Nouvelle, Paris.
[17]  Delaney, J.J. (1997) Synthesis of New Heterocyclic TCNQ Analogues. Doctorate of Philosophy, Dublin City University (School of Chemical Sciences), Dublin, 202 p.
[18]  Andersen, J.R. and Jorgensen, O. (1979) Organic Metals. Mono- and 2,5-Di-Substituted 7,7,8,8-Tetracyano-P-Quinodimethanes and Conductivities of Their Charge-Transfer Complexes. Royal Chemical Society, Journal of Perkin Transactions, 1, 3095-3098.
https://doi.org/10.1039/P19790003095
[19]  Wheland, R.C. and Gillson, J.L. (1976) Synthesis of Electrically Conductive Organic Solids. Journal of the American Chemical Society, 98, 3916-3925.
https://doi.org/10.1021/ja00429a030
[20]  Ferraris, J.P. and Saito, G. (1978) Organic Metals with Asymmetric Acceptors: The Monofluorotetracyanoquino-Dimethane Anion. Journal of the Chemical Society, Chemical Communications, No. 22, 992-993.
https://doi.org/10.1039/C39780000992
[21]  Saito, G. and Ferraris, J.P. (1979) Difluorotetracyanoquinodimethane: Electron Affinity Cut-Off for “Metallic” Behaviour in a Tetrathiafulvalene Salt. Journal of the Chemical Society, Chemical Communications, No. 22, 1027-1029.
https://doi.org/10.1039/C39790001027
[22]  Tsubata, Y., Suzuki, T., Yamashita, Y., Mukai, T. and Miyashi, T. (1992) Tetracyanoquinodimethanes Fused with 13, s-Thiadiazole and Pyrazine Units. Heterocycles, 33, 337-348.
https://doi.org/10.3987/COM-91-S44
[23]  Yamashita, Y. (1989) Novel Electron Acceptors and Donors Containing Fused-Hetero-cycles. Journal of Synthetic Organic Chemistry, 47, 1108-1117.
[24]  Dennington, R., Keith, T. and Millam, J. (2009) GaussView Version 5. Semichem Inc., Shawnee Mission.
[25]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford.
[26]  (2015) ACDLABS 10. Advanced Chemistry Development Inc., Toronto.
[27]  Microsoft® Excel® 2010.
[28]  (2014) XLSTAT Version 2014.5.03, Copyright Addinsoft 1995-2014.
[29]  Minitab® 18.
[30]  Vessereau, A. (1988) Méthodes statistiques en biologie et en agronomie. Lavoisier (Tec & Doc), Paris, 538 p.
[31]  Chatterje, S. and Hadi, A.S. (2006) Regression Analysis by Example. 4th Edition, John Wiley & Son, Inc., Hoboken, 366 p.
https://doi.org/10.1002/0470055464
[32]  Siegel, A.F. (1997) Practical Business Statistics. IRWIN, 3rd Edition.
[33]  Besse, P. (2003) Pratique de la modélisation statistique, Publications du laboratoire de statistique et Probabilité.
[34]  Cook, R.D. and Weisberg, S. (1994) An Introduction to Regression Graphics. Wiley Series in Probability and Mathematical Statistics, Hoboken, 265 p.
https://doi.org/10.1002/9780470316863
[35]  Kubinyi, H. (1994) Variable Selection in QSAR Studies. I. An Evolutionary Algorithm. Quantitative Structure-Activity Relationships, 13, 285-294.
https://doi.org/10.1002/qsar.19940130306
[36]  Golbraikh, A. and Tropsha, A. (2002) Beware of q2! Journal of Molecular Graphics and Modelling, 20, 269-276.
https://doi.org/10.1016/S1093-3263(01)00123-1
[37]  Todeschini, R. (2010) Milano, Chemometrics and QSAR Research Group. University of Milano Bicocca, Milano.
[38]  Roy, P.P., Paul, S., Mitra, I. and Roy, K. (2009) On Two Novel Parameters for Validation of Predictive QSAR Models. Molecules, 14, 1660-1701.
https://doi.org/10.3390/molecules14051660
[39]  Consonni, V., Ballabio, D. and Todeschini, R. (2010) Evaluation of Model Predictive Ability by External Validation Techniques. Journal of Chemometrics, 24, 194-201.
https://doi.org/10.1002/cem.1290
[40]  Roy, K., Mitra, I., Kar, S., Ojha, P.K., Das, R.N. and Kabir, H. (2012) Comparative Studies on Some Metrics for External Validation of QSPR Models. Journal of Chemical Information and Modeling, 52, 396-408.
https://doi.org/10.1021/ci200520g
[41]  Tropsha, A., Gramatica, P. and Gombar, V.K. (2003) The Importance of Being Earnest: Validation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR & Combinatorial Science, 22, 69-77.
https://doi.org/10.1002/qsar.200390007
[42]  Ouattara, O. and Ziao, N. (2017) Quantum Chemistry Prediction of Molecular Lipophilicity Using Semi-Empirical AM1 and Ab Initio HF/6-311++G Levels. Computational Chemistry, 5, 38-50.
https://doi.org/10.4236/cc.2017.51004
[43]  Gramatica, P. (2007) Principles of QSAR Models Validation: Internal & External. QSAR and Combinatorial Sciences, 26, 694-701.
https://doi.org/10.1002/qsar.200610151
[44]  Netzeva, T.I., Worth, A.P., Aldenberg, T., Benigni, R., Cronin, M.T.D., Gramatica, P., Jaworska, J.S., Kahn, S., Klopman, G., Marchant, C.A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G.Y., Perkins, R., Roberts, D.W., Schultz, T.W., Stanton, D.T., Van De Sandt, J.J.M., Tong, W., Veith, G. and Yang, C. (2005) Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships. Alternatives to Laboratory Animals, 33, 155-173.
https://doi.org/10.1177/026119290503300209
[45]  Koopmans, T. (1933) über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2
[46]  Kenny, P.W. (1995) Prediction of Planarity and Reduction Potential of Derivatives of Tetracyanoquinodimethane Using Ab Initio Molecular Orbital Theory. Journal of the Chemical Society, Perkin Transactions, 2, 907-909.
https://doi.org/10.1039/p29950000907
[47]  Erikson, L., Jaworska, J., Worth, A., Cromin, M., McDowell, R.M. and Gramatica, P. (2003) Methods for Reliability, Uncertainty Assessment, and Applicability Evaluations of Regression Based and Classification QSPRs. Environmental Health Perspective, 111, 1361-1375.
https://doi.org/10.1289/ehp.5758
[48]  Shapiro, S.S. and Wilk, M.B. (1965) An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52, 591-611.
https://doi.org/10.1093/biomet/52.3-4.591
[49]  Durbin, J. and Watson, G.S. (1951) Testing for Serial Correlation in Least Squares Regression, II. Biometrika, 38, 159-178.
https://doi.org/10.1093/biomet/38.1-2.159
[50]  Touhami, I., Mokrani, K. and Messadi, D. (2012) Modèles QSRR hybridesalgorithmegénétique-régressionlinéaire multiple des indices de rétention de pyrazines en chromatographie gazeuse. Lebanese Science Journal, 13, 75-88.
[51]  Jaworska, J., Nikolova-Jeliazkova, N. and Aldenberg, T. (2005) QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review. ATLA, 33, 445-459.
https://doi.org/10.1177/026119290503300508

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133