The dynamics of N & P nutrient inputs and the
consequent epilimnetic concentration during 1969-2018 in
Lake Kinneret was studied. The consequences of their availability on algal
composition were also studied. Two prominent periods were indicated: 1)
Sufficient supply of N accompanied by Peridinium enhancement; 2) N deficiency
and P sufficiency-induced Peridinium reduction and Cyanobacterium enhancement.
The impact of Anthropocene conditions and dust deposition on N & P
availability is evaluated.
References
[1]
Serruya, C., Gophen, M. and Pollingher, U. (1980) Lake Kinneret: Carbon Flow Patterns and Ecosystem Management. Archiv fur Hydrobiologie, 88, 265-302.
[2]
Edmondson, W.T. and Lehman, J.T. (1981) The Effect of Changes in the Nutrient Income on the Condition of Lake Washington. Limnology and Oceanography, 26, 1-19. https://doi.org/10.4319/lo.1981.26.1.0001
[3]
LKDB (1969-2018) Kinneret Limnological Laboratory, IOLR: Lake Kinneret Data Base and Annual Reports.
[4]
Mekorot Water Supply Co. Northern Region Monitor Unit (1970-2018) Data Base, Annual Reports. Jordan River Water Chemistry Gesher Huri (Gesher Ha’Pkak).
[5]
Water Authority Hydrological Service and Meteorological Service (M. Peres) (1940-2018) Precipitation Data, Air Temperature Information, Annual Reports.
[6]
Ganor, E., Foner, H.A. and Gravenhost, G. (2003) The Amount and Nature of the Dustfall on Lake Kinneret (the Sea of Galilee), Israel: Flux and fractionation. Atmospheric Environment, 37, 4301-4315.
https://doi.org/10.1016/S1352-2310(03)00455-2
[7]
Nishri, A. (2014) Chapter 19.4.3. Atmospheric Sources: Dry Deposition (Dust). In: Zohary, T., Sukenik, A., Berman, T. and Nishri, A., Eds., Lake Kinneret: Ecology and Management, Springer, Berlin, 341-346.
[8]
Gross, A., Nishri, A. and Angert, A. (2013) Use of Phosphate Oxygen Isotopes for identifying Atmospheric-P Source: A Case Study at Lake Kinneret. Environmental Science & Technology, 47, 2721-2727. https://doi.org/10.1021/es305306k
[9]
Zarka, A., Beeri-Shlevin, Y., Litaor, M. and Reichman, O. (2019) Identification of Phosphorus Driven to Lake Kinneret, Israel. Israel Geological Society Annual Meeting, Kfar Blum, 26-28 March 2019, 134.
[10]
Serruya, S. (1978) Chapter III Meteorology, C, 5: Winds. In: Serruya, C., Ed., Lake Kinneret Monographiae Biologicae, Vol. 32, Dr. W. Junk Publishers, The Hague, Boston, London, 65-68. https://doi.org/10.1007/978-94-009-9954-1
[11]
Cavari, B.Z. (1978) Chapter B: Photosynthetic Sulfur Bacteria. In: Serruya, C., Ed., Lake Kinneret Monographiae Biologicae, Vol. 32, Dr. W. Junk Publishers, The Hague, Boston, London, 319. https://doi.org/10.1007/978-94-009-9954-1_12
[12]
Bergstein, T., Henis, Y. and Cavari, B.Z. (1979) Investigations on the Photosythetic Sulfur Bacterium Chlorobium Phaeobacteroides Causing Seasonal Blooms in Lake Kinneret. Canadian Journal of Microbiology, 25, 999-1007.
https://doi.org/10.1139/m79-154
[13]
Gophen, M. (2015) The Impact of Available Nitrogen Deficiency on Long-Term Changes in the Lake Kinneret Ecosystem. Open Journal of Ecology, 5, 147-157.
https://doi.org/10.4236/oje.2015.54013
[14]
Gophen, M. (2015) Experimental Study of the Aphanizomenon ovalisporum Response to Nitrogen Fertilization in the Sub-Tropical Eu-Meso-Trophic Lake Kinneret (Israel). Open Journal of Ecology, 5, 259-265.
https://doi.org/10.4236/oje.2015.56020
[15]
Gophen, M., Val Smith, H., Nishri, A. and Threlkeld, S.T. (1999) Nitrogen Deficiency, Phosphorus Sufficiency, and the Invasion of Lake Kinneret, Israel, by N2-Fixing Cyanobacterium Aphanizomenon ovalisporum. Aquatic Sciences, 1, 1-14.
https://doi.org/10.1007/PL00001326
[16]
Shapiro, J. (1973) Blue-Green Algae: Why They Become Dominant. Science, 179, 382-384. https://doi.org/10.1126/science.179.4071.382
[17]
Smith, V.H. (1982) The Nitrogen and Phosphorus Dependence of Algal Biomass in Lakes: An Experimental and Theoretical Analysis. Limnology and Oceanography, 27, 1101-1112. https://doi.org/10.4319/lo.1982.27.6.1101
[18]
Smith, V.H. (1983) Low Nitrogen to Phosphorus Ratios Favor Dominance by Blue-Green Algae in Lake Phytoplankton. Science, 221, 669-671.
https://doi.org/10.1126/science.221.4611.669
[19]
Taranun, Z.E., Gregory, E., Leavitt, P.R., Buchaca, T., Katalan, J., Guilizzoni, P., Lami, A., McGowan, S., Moorhouse, H., Murabito, G., Mark, F.R., Stevenson, A., Thompson, P.L. and Vinerbrook, R.D. (2015) Acceleration of Cyanobacterial Dominance in North Temperate-Subarctic Lakes during the Anthropocene. Ecology Letters, 18, 375-384.
[20]
Havens, K.E., James, R.T., East, T.L. and Smith, V.H. (2003) N:P Ratios, Light, Limitation, and Cyanobacterial Dominance in a Subtropical Lake Impacted by Non-Point Source Nutrient Pollution. Environmental Pollution, 122, 379-390.
https://doi.org/10.1016/S0269-7491(02)00304-4
[21]
Berman, T. (1970) Phosphtase and Phosphorus Availability in Lake Kinneret. Limnology and Oceanography, 15, 663-674. https://doi.org/10.4319/lo.1970.15.5.0663
[22]
Serruya, C. and Berman, T. (1975) Phosphorus and Nitrogen and the Growth of Algae in Lake Kinneret. Journal of Phycology, 121, 155-162.
https://doi.org/10.1111/j.1529-8817.1975.tb02764.x
[23]
Rodhe, W. (1978) Chapter: Peridinium Cinctum Fa Westii, 4: Growth Characteristics. In: Serruya, C., Ed., Lake Kinneret Monographiae Biologicae, Vol. 32, Dr. W. Junk Publishers, The Hague, Boston, London, 275-285, 501 p.
[24]
Lindstrom, K. (1980) Peridinium Cinctum Bioassay of Se in Lake Erken. Archiv fur Hydrobiologie, 89, 110-117.
[25]
Nishri, A. and Sukenik, A. (2012) Monitoring of Selenium Species in Lake Kinneret and Its Drainage Basin. IOLR Report # T23/2012. (In Hebrew)
[26]
Nishri, A., Brenner, I.B., Hall, G.E.M. and Taylor, H.E. (1999) Temporal Variation in Dissolved Selenium in Lka Kinneret (Israel). Aquatic Sciences, 61, 215-233.
https://doi.org/10.1007/s000270050063
[27]
Nishri, A. and Gavrieli, I. (2019) Integrative Approach to the Study of the Impact of Water Bodies in the Hula Valley on Lake Kinneret. 2nd Annual Report Submitted to the Water Authority, IOLR Report No. T8-2019 22 p. (In Hebrew)