Potential Biostimulant Effect of Clam Shells on Growth Promotion of Plantain PIF Seedlings (var. Big Ebanga & Batard) and Relation to Black Sigatoka Disease Susceptibility
Plantain contributes significantly to income generation and food security for millions
of people in the world. However, it faces problems of seedlings quantity,
quality and availability. The innovation of the
“plants issus de fragments de tiges” (PIF) technique could be a solution to
these problems for small holders’ farmers. The aim
of this research is to evaluate the effect of clam shells through amendment of Batard
and Big Ebanga PIF substrate, on the growth promotion of seedlings and their protection
against black Sigatoka disease (BSD). Plantain PIF seedlings of the two
varieties were grown in a substrate amended with 1% concentration of the clam
shells powder in the presence of negative control in the sterile and
non-sterile conditions. Agromorphological characteristics, susceptibility level
to BSD, total proteins and polyphenols content were assessed. Because of the
presence of clam shells in the substrates, explants germinated quickly,
generated high number of shoots, grew taller by 32%, with a diameter of pseudo
stems of 30%, and area of leaves of 18% compared to control. In addition, the
seedlings were less susceptible to BSD by 73% compared to those of controls.
The treatment seems to allow the accumulation of larger amounts of total proteins
and polyphenols before inoculation and after inoculation that could participate
in the growth promotion and the reduction of plant’s susceptibility level. Clam
shells treatment acts as a biofertilizer/biopesticide and could be helpful to
boost production of plantain seedlings, the use of the by-products of fishing
in agriculture and helps alleviate poverty of small holders’ farmers.
References
[1]
Lassoudière, A. (2007) Le bananier et sa culture. Editions Quae.
[2]
FAO (2017) Food and Agriculture Organization of the United Nations. FAO Statistics: Bananas. http://www.fao.org/faostat/en/#data/QC
[3]
The World Bank (2018) Breaking Down the Barriers to Regional Agricultural Trade in Central Africa. World Bank Publications, Washington DC.
[4]
CARBAP (2002) Création et conduite d’une Bananeraie au Cameroun; le Cas du Bananier Plantain. Fiche Technique, Njombé.
[5]
Kwa, M. (2002) Techniques horticoles de production de masse de plants de banane: La technique des plants issus de fragments de tige (PIF). Fiche technique CARBAP.
[6]
Ewané, C.A., Chillet, M., Castelan, F., Brostaux, Y., Lassois, L., Ngando, E.J., Hubert, O., Chilin-Charles, Y., Lepoivre, P. and de Lapeyre de Bellaire, L. (2013) Impact of the Extension of Black Leaf Streak Disease on Banana Susceptibility to Post-Harvest Diseases. EDP Sciences. Fruits, 68, 351-365.
https://doi.org/10.1051/fruits/2013081
[7]
Onautshu, O.D. (2013) Caractérisation des populations de Mycosphaerella fijiensis et épidémiologie de la cercosporiose noire du bananier (Musa spp.) dans la région de Kisangani-République Démocratique du Congo. Thèse de doctorat ès science, Université Catholique de Louvain, Belgium.
[8]
Malerba, M. and Cerana, R. (2019) Recent Applications of Chitin- and Chitosan-Based Polymers in Plants. Polymers, 11, 839.
https://doi.org/10.3390/polym11050839
[9]
Téné Tayo, P.M., Ewané, C.A., Effa, O.P. and Boudjeko, T. (2017) Effects of Chitosan and Snail Shell Powder on Cocoa (Theobroma cacao L.) Growth and Resistance against Black Pod Disease Caused by Phytophthora Megakarya. African Journal of Plant Science, 11, 331-340. https://doi.org/10.5897/AJPS2016.1487
[10]
Khoushab, F. and Yamabhai, M. (2010) Chitin Research Revisited. Marine Drugs, 8, 1988-2012. https://doi.org/10.3390/md8071988
[11]
Melegari, S.P. and Matias, W.G. (2012) Preliminary Assessment of the Performance of Oyster Shells and Chitin Materials as Adsorbents in the Removal of Saxitoxin in Aqueous Solutions. Chemistry Central Journal, 6, 86.
https://doi.org/10.1186/1752-153X-6-86
[12]
du Jardin, P. (2015) Plants Biostimulants: Definition, Concept, Main Categories and Regulations. Scientia Horticultura, 196, 3-14.
https://doi.org/10.1016/j.scienta.2015.09.021
[13]
Abessolo, A.P. (2012) Guide pratique de production de rejets de bananier plantain par la methode P.I.F. Manuel de formation pour les groupes de producteurs agricoles.
[14]
Ewané, C.A., Lassois, L., Brostaux, Y., Lepoivre, P. and de Lapeyre de Bellaire L. (2012b) The Susceptibility of Bananas to Crown Rot Disease Is Influenced by Geographic and Temporal Effects. Canadian Journal of Plant Pathology, 35, 27-36.
https://doi.org/10.1080/07060661.2012.733731
[15]
Pirovani, P.C., Heliana, A.S.C., Regina, C.R., Dayane, S.G., Fatima, C.A. and Fabienne, M. (2008) Protein Extraction for Proteome Analysis from Cacao Leaves and Meristems, Organs Infected by Moniliophthora perniciosa, the Causal Agent for the Witches’ Broom Diseases. Electrophoresis Journal, 29, 2391-2401.
https://doi.org/10.1002/elps.200700743
[16]
Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Annals of Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999
[17]
El Hadrami, I. and Baaziz, M. (1997) Somatic Embryogenesis and Analysis of Peroxydase in Phoenix dactylifera L. Biologia Plantarum, 37, 197-203.
https://doi.org/10.1007/BF02913210
[18]
Marigo, G. (1973) Méthode de fractionnement et d’estimation des composés phénoliques chez les végétaux. Analysis, 12, 106-110.
[19]
Martinez, M.M., Ortega, R., Janssens, M. and Fincheira, P. (2018) Use of Organic Amendments in Table Grape: Effect on Plant Root System and Soil Quality Indicators. Journal of Soil Science and Plant Nutrition, 18, 100-112.
https://doi.org/10.4067/S0718-95162018005000501
[20]
Téné Tayo, P.M., Dzelamonyuy, A., Omokolo, N.D. and Boudjeko, T. (2019) Enhancement of Theobroma cacao Seedling Growth and Tolerance to Phytophthora megakarya by Heat-Treated Oyster Shell Powder. American Journal of Plant Sciences, 10, 578-594. https://doi.org/10.4236/ajps.2019.104042
[21]
Zhou, Y., Jiang, S., Jiao, Y. and Wang, H. (2017) Synergistic Effects of Nanochitin on Inhibition of Tobacco Root Rot Disease. International Journal of Biological Macromolecules, 99, 205-212. https://doi.org/10.1016/j.ijbiomac.2017.02.069
[22]
Akter, J., Jannat, R., Hossain, M.M., Ahmed. J.U. and Rubayet, T.M. (2018) Chitosan for Plant Growth Promotion and Disease Suppression against Anthracnose in Chilli. International Journal of Environment, Agriculture and Biotechnology, 3, 806-817. https://doi.org/10.22161/ijeab/3.3.13
[23]
Sathiyabama, M. and Manikandan, A. (2018) Application of Copper-Chitosan Nanoparticles Stimulate Growth and Induce Resistance in Finger Millet (Eleusine coracana Gaertn.) Plants against Blast Disease. Journal of Agricultural and Food Chemistry, 66, 1784-1790. https://doi.org/10.1021/acs.jafc.7b05921
[24]
Egusa, M., Matsui, H., Urakami, T., Okuda, S., Ifuku, S., Nakagami, H. and Kaminaka, H. (2015) Chitin Nanofibers Elucidates the Elicitor Activity of Polymeric Chitin in Plants. Frontiers in Plant Science, 6, 1098-1105.
https://doi.org/10.3389/fpls.2015.01098
[25]
Moyer, M.M., Gadoury, D.M., Cadle-Davidson, L., Dry, I.B., Magarey, P.A., Wilcox, W.F. and Seem, R.C. (2010) Effects of Acute Low Temperature Events on Development of Erysiphe necator and Susceptibility of Vitis vinifera. Phytopathology, 100, 1240-1249. https://doi.org/10.1094/PHYTO-01-10-0012
[26]
Andersen, E.J., Ali, S., Byamukama, E., Yen, Y. and Nepal, M.P. (2018) Disease Resistance Mechanisms in Plants. Genes, 9, 339. https://doi.org/10.3390/genes9070339
[27]
Hashem, A., Tabassum, B. and Fathi Abd_Allah, E. (2019) Bacillus subtilis: A Plant-Growth Promoting Rhizobacterium that also Impacts Biotic. Saudi Journal of Biological Sciences, 6 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004
[28]
Pusztahelyi, T. (2018) Chitin and Chitin-Related Compounds in Plant-Fungal Interactions. Mycology, 9, 189-201. https://doi.org/10.1080/21501203.2018.1473299
[29]
Perez-Vicente, L. (2012) A Holistic Integrated Management Approach to Control Black Sigatoka Disease of Banana Caused by Mycosphaerella fijiensis. Food and Agriculture Organization of the United Nations.
[30]
Ewané, C.A., Lepoivre, P., De Lapeyre de Bellaire, L. and Lassois, L. (2012) Involvement of Phenolic Compounds in the Susceptibility of Bananas to Crown Rot. A Review. Biotechnologie, Agronomie, Société et Environnement, 16, 393-404.
[31]
Gurav, R.G. and Jadhav, J.P. (2013) A Novel Source of Biofertilizer from Feather Biomass for Banana Cultivation. Environmental Science and Pollution Research, 20, 4532-4539. https://doi.org/10.1007/s11356-012-1405-z
[32]
Pusztahelyi, T., Holb, I.J. and Pócsi, I. (2015) Secondary Metabolites in Fungus-Plant Interactions. Frontiers in Plant Science, 6, 1-23.
https://doi.org/10.3389/fpls.2015.00573
[33]
Collingborn, F.M.B., Gowen, S.R. and Mueller-Harvey, I. (2000) Investigations into the Biochemical Basis for Nematode Resistance in Roots of Three Musa Cultivars in Response to Radopholus similis Infection. Journal of Agricultural and Food Chemistry, 48, 5297-301. https://doi.org/10.1021/jf000492z
[34]
de Ascensao, A.R.F.D.C. and Dubery, I.A. (2003) Soluble and Wall-Bound Phenolics and Phenolic Polymers in Musa acuminata Roots Exposed to Elicitors from Fusarium oxysporum f.sp. Cubense. Phytochemistry, 63, 679-686.
https://doi.org/10.1016/S0031-9422(03)00286-3
[35]
Wuyts, N., Lognay, G., Verscheure, M., Marlier, M., De Waele, D. and Swennen, R. (2007) Potential Physical and Chemical Barriers to Infection by the Burrowing Nematode Radopholus similis in Roots of Susceptible and Resistant Banana (Musa spp.). Plant Pathology, 56, 878-890.
https://doi.org/10.1111/j.1365-3059.2007.01607.x
[36]
Ewané, C.A. (2012) étude de la composante physiologique impliquée dans le développement des pourritures de couronne de bananes et role des composés phénoliques dans les mécanismes de variation de sensibilité. Thèse de Doctorat ès science soutenue en décembre 2012 à GxABT-ULg (Gembloux Agro-Bio Tech-Université de Liège)-Belgique.