全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Exact Traveling Wave Solutions of Equalwidth Equation

DOI: 10.4236/jamp.2019.710157, PP. 2315-2323

Keywords: Expansion Method, Homogeneous Balance Principle, Travelling Wave Solution

Full-Text   Cite this paper   Add to My Lib

Abstract:

Combining the principle of homogeneous balance method, the exp function expansion method and traveling wave transformation method are applied to the Equalwidth equation to obtain the exact solution of the Equalwidth equation. The obtained solutions include trigonometric functions, hyperbolic functions and rational functions. The method can solve the exact traveling wave solutions of other nonlinear evolution equations.

References

[1]  Feng, Q.J. (2012) Application of (G' / G + G') Expansion Method to Obtain the Accurate Solution of Equal Width Equation. Journal of Shanxi Normal University (Natural Science Edition), 26, 5-7.
[2]  Xin, X.P. (2008) Nonlocal Symmetry and Exact Solution of Nonlinear Development Equation. Journal of Liaocheng University (Natural Science Edition), 32, 15-20.
[3]  Wazwaz, A.M. (2004) The Tanh Method for Travelling Wave Solutions of Nonlinear Equations. Applied Mathematics and Computation, 154, 713-723.
https://doi.org/10.1016/S0096-3003(03)00745-8
[4]  Tascan, F. and Yakut, A. (2015) Conservation Laws and Exact Solutions with Symmetry Reduction of Nonlinear Reaction Diffusion Equations. Int.J. Nonlinear Sci. Numer. Simul., 16, 191-196.
https://doi.org/10.1515/ijnsns-2014-0098
[5]  Zayed, E., Zedan, H.A. and Gepreel, K.A. (2011) Group Analysis and Modified Extended Tanh-Function to Find the Invariant Solutions and Soliton Solutions for Nonlinear Euler Equations. International Journal of Nonlinear Sciences and Numerical Simulation, 5, 221-234. https://doi.org/10.1515/IJNSNS.2004.5.3.221
[6]  Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A. and Belic, M. (2015) Optical Solitons in Nonlinear Cosine Function Method and Bernoulli’s Equation Approach. Nonlinear Dynamics, 81, 1933-1949.
https://doi.org/10.1007/s11071-015-2117-y
[7]  Fan, E. and Zhang, H. (1998) A Note on the Homogeneous Balance Method. Physics Letters A, 246, 403-406.
https://doi.org/10.1016/S0375-9601(98)00547-7
[8]  Abdou, B. (2007) The Extended F-Expansion Method and Its Application for a Class of Nonlinear Evolution Equations. Chaos Solitons Fractals, 31, 95-104.
https://doi.org/10.1016/j.chaos.2005.09.030
[9]  Bekir, A. and Boz, A. (2008) Exact Solutions for Nonlinear Evolution Equations Using Exp-Function Method. Physics Letters A, 372, 1619-1625.
https://doi.org/10.1016/j.physleta.2007.10.018
[10]  Misirli, E. and Gurefe, Y. (2010) Exact Solutions of the Drinfel’d, Sokolov, Wilson Equations by Using Exp-Function Method. Applied Mathematics and Computation, 216, 2623-2627.
https://doi.org/10.1016/j.amc.2010.03.105

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133