全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纤维/水泥改性泥浆超声波速特性研究
Study on Ultrasound Velocity Characteristics of Fiber/Cement Modified Slurry

DOI: 10.12677/HJCE.2019.87146, PP. 1260-1266

Keywords: 改性泥浆,无侧限抗压,抗压强度,超声波速
Modified Slurry
, Unconfined Compressive, Compressive Strength, Ultrasonic Velocity

Full-Text   Cite this paper   Add to My Lib

Abstract:

无侧限抗压强度是纤维/水泥改性泥浆的重要力学指标,而目前的检测技术都需要对试样进行破坏,因此针对纤维/水泥改性泥浆的抗压强度传统测试方法进行改进,提出采用超声波法对改性泥浆的抗压强度进行测试,对掺量的改变引起的改性泥浆波速的变化特性进行研究。试验结果表明:1) 在不掺纤维的情况下,波速随着水泥掺量的增加而增大;2) 水泥掺量不变的情况下,波速随着纤维掺量的增加而呈现下降的趋势,不同材料改性泥浆的超声波速与抗压强度之间具有良好的相关性;3) 水泥产量的改变对纤维/水泥改性泥浆的抗压强度影响最大,水泥掺量在由20%增加为25%时,强度增幅最大,抗压强度大小增加了44%。
Unconstrained compressive strength is an important mechanical index of fiber/cement modified slurry, but the current testing technology needs to destroy the samples. In view of the improvement of the traditional test method of compressive strength of fiber/cement modified slurry, the ultrasonic method is proposed to test the compressive strength of modified slurry, and the variation characteristics of wave velocity of modified slurry caused by the change of dosage are studied.? The results show that: 1) Without fiber, the wave velocity increases with the increase of cement content; 2) When the cement content remains unchanged, the wave velocity decreases with the increase of fiber content, and there is a good correlation between ultrasonic velocity and compressive strength; 3) The change of cement output has the greatest impact on the compressive strength of fiber/cement modified slurry, and the cement content increases from 20% to 25%. At the same time, the increase of strength is the largest, and the compressive strength increases by 44%.

References

[1]  Wu, Y., Zhou, Z., Wang, D., Lu, Y., Wang, J. and Lin, F. (2017) Experimental study of Ningbo Waste Slurry Treatment by Vacuum Preloading with Flocculants. Journal of Dalian University of Technology, 57, 157-163.
[2]  Grohs, H. (2007) Cost-Efficient Regeneration of Bore Slurry for Driving of Weser Tunnel. Tunnel Construction, 27, 47-51.
[3]  房凯, 张忠苗, 刘兴旺, 等. 工程废弃泥浆污染及其防治措施研究[J]. 岩土工程学报, 2011, 33(10): 238-241.
[4]  Wang, R. and Zhang, Y.X. (2018) Recycling Fresh Concrete Waste: A Review. Structural Concrete, 19, 1939-1955.
https://doi.org/10.1002/suco.201800057
[5]  唐朝生, 顾凯. 聚丙烯纤维和水泥加固软土的强度特性[J]. 土木工程学报, 2011(S2): 5-8.
[6]  Tang, Q., Shi, P., Zhang, Y., Liu, W. and Chen, L. (2019) Strength and Deformation Properties of Fiber and Cement Reinforced Heavy Metal-Contaminated Synthetic Soils. Advances in Materials Science and Engineering, 2019, Article ID: 5746315.
https://doi.org/10.1155/2019/5746315
[7]  Gao, L., Hu, G. Xu, N., Fu, J., et al. (2015) Experimental Study on Unconfined Compressive Strength of Basalt Fiber Reinforced Clay Soil. Advances in Materials Science and Engineering, 2015, Article ID: 561293.
https://doi.org/10.1155/2015/561293
[8]  缪群, 李增选. 高强混凝土的超声特性及检测标准问题探讨[J]. 混凝土, 2000(11): 39-41.
[9]  Su, H. and Kim, S.H. (2015) Estimation of Compressive Strength of Concrete Structures Using the Ultrasonic Pulse Velocity Method and Spectral analysis of Surface Wave Method. Materials Research In-novations, 19, S5-1289- S5-1294.
https://doi.org/10.1179/1432891714Z.0000000001296
[10]  Sadeghi Nik, A. and Lotfi Omran O. (2013) Estimation of Compressive Strength of Self-Compacted Concrete with Fibers Consisting Nano-SiO2 Using Ultrasonic Pulse Velocity. Construction and Building Materials, 44, 654-662.
https://doi.org/10.1016/j.conbuildmat.2013.03.082
[11]  Demirboa, R. (2004) Relationship between Ultrasonic Velocity and Compressive Strength for High-Volume Mineral-Admixtured Concrete. Cement and Concrete Research, 34, 2329-2336.
https://doi.org/10.1016/j.cemconres.2004.04.017
[12]  王振波. 混杂纤维延性水泥基材料单轴受压力学特性[J]. 建筑材料学报, 2018, 21(4): 115-120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133