全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sequential Preparation of [18F]FLT and [18F]FMISO Employing Advion NanoTek® Microfluidic Synthesis System

DOI: 10.4236/ami.2019.94008, PP. 53-59

Keywords: Sequential, Microfluidic, [18F]FLT, [18F]FMISO

Full-Text   Cite this paper   Add to My Lib

Abstract:

One of the commercially available capillary-based microfluidic synthesizers is Advion NanoTek Microfluidic Synthesis System and is currently being used across the globe. The goal of this study is to demonstrate the system capability to perform the synthesis of two compounds sequentially without cleaning the equipment between the syntheses. We have chosen to prepare two key radiotracers [F-18]FLT and [F-18]FMISO. The basic microfluidic flow chemistry module was reconfigured to allow the hydrolysis of the second tracer in a vial using reactor 1 as a heat source and the system was integrated to semi-preparative high-performance liquid chromatography with a column selector and solvent selector. The decay corrected radio chemical yields of [18F]FLT and [18F]FMISO were found to be 28.5% and 38.6% respectively. The specific activity was determined to be >2 Ci/μmol.

References

[1]  Adrian, H. (2007) Angewandte Chemie International Edition in English, 46, 1772.
[2]  Lu, S.Y. and Pike, V.W. (2006) Micro-Reactors for PET Tracer Labeling. In: Schubiger, P.A., Lehman, L. and Friebe, M., Eds., PET Chemistry: The Driving Force in Molecular Imaging, Springer Verlag, Berlin, 271-289.
https://doi.org/10.1007/978-3-540-49527-7_10
[3]  Fortt, R. and Gee, A. (2013) Microfluidics: A Golden Opportunity for Positron Emission Tomography? Future Medicinal Chemistry, 5, 241.
https://doi.org/10.4155/fmc.13.8
[4]  Miller, P.W. (2009) Radiolabelling with Short-Lived PET (Positron Emission Tomography) Isotopes Using Microfluidic Reactors. Journal of Chemical Technology & Biotechnology, 84, 309-315.
https://doi.org/10.1002/jctb.2061
[5]  Miller, P.W., de Mello, A.J. and Gee, A.D. (2010) Application of Microfluidics to the Ultra-Rapid Preparation of Fluorine-18 Labelled Compounds. Current Radiopharmaceuticals, 3, 254-262.
https://doi.org/10.2174/1874471011003030254
[6]  Lucignani, G. (2006) Pivotal Role of Nanotechnologies and Biotechnologies for Molecular Imaging and Therapy. European Journal of Nuclear Medicine and Molecular Imaging, 33, 849-851.
https://doi.org/10.1007/s00259-006-0149-8
[7]  Shen, C.K. (2011) Microfludic-Assisted Radiochemistry and PET Probe Synthesis. MI Gateway, 5, 1.
[8]  Pascali, G., Matesic, L., Collier, T.L., Wyatt, N. and Fraser, B.H. (2014) Optimization of Nucleophilic 18F Radiofluorinations Using a Microfluidic Reaction Approach. Nature Protocols, 9, 2017-2029.
https://doi.org/10.1038/nprot.2014.137
[9]  Briard, E., Zoghbi, S.S., Simeon, F.G., Imaizumi, M., Gourley, J.P., Shetty, H.U., Lu, S., Fuhita, M., Innis, R.B. and Pike, V.W. (2009) Single-Step High-Yield Radiosynthesis and Evaluation of a Sensitive 18F-Labeled Ligand for Imaging Brain Peripheral Benzodiazepine Receptors with PET. Journal of Medicinal Chemistry, 52, 688-699.
https://doi.org/10.1021/jm8011855
[10]  Wester, H.J., Schoultz, B.W., Hultsch, C. and Henriksen, G. (2009) Fast and Repetitive In-Capillary Production of [18F]FDG. European Journal of Nuclear Medicine and Molecular Imaging, 36, 653.
https://doi.org/10.1007/s00259-008-0985-9
[11]  Pascali, G., Mazzone, G., Saccomanni, G., Manera, C. and Salavadori, P.A. (2010) Microfluidic Approach for Fast Labeling Optimization and Dose-on-Demand Implementation. Nuclear Medicine and Biology, 37, 547-555.
[12]  Liu, K., Lepin, E.J., Wang, M.W., Guo, F., Lin, W.Y., Chen, Y.C., Sirk, S.J., Olma, S., Phelps, M.E. and Zhao, X.Z. (2010) Micro Chip Based F-18 Labeling of Biomolecules for Immuno Positron Emission Tomography. Molecular Imaging, 10, 168.
[13]  Liang, S.H., Yokell, D.L., Rice, P.A., Jackson, R.N., Callahan, R., Jackson, K.A., Alagille, D., Tamagnan, G., Collier, T.L. and Vasdev, N. (2014) Microfluidic Continuous-Flow Radiosynthesis of [18F]FPEB Suitable for Human PET Imaging. Medicinal Chemistry Communication, 5, 432-435.
https://doi.org/10.1039/C3MD00335C
[14]  Collier, T., Zheng, M., Bois, F., Hammond, K., Akula, M., Kabalka, G. and Huang, Y. (2015) Synthesis of [18F]FMISO in a Flow Through Microfluidic Reactor: Development and Clinical Application. Nuclear Medicine and Biology, 42, 578.
https://doi.org/10.1016/j.nucmedbio.2015.01.010
[15]  Liang, S.H., Yokell, D.L., Normandin, M.D., Rice, P.A., Jackson, R.N., Shopu, T.M., Brady, T.J., Fakhri, G., Collier, T.L. and Vasdev, N. (2014) First Human Use of Radiopharmaceutical Prepared by Continuous-Flow Microfluidic Radiofluorination: Proof of Concept with the Tau imaging. Molecular Imaging, 13, 1.
[16]  Martin, S.T., Eisenbarth, J.A., Wagner-Uterman, U., Mier, W., Henz, M., Pritzkov, H., et al. (2002) A new precursor for the radiosynthesis of [18F]FLT. Nuclear Medicine and Biology, 29, 263.
[17]  Yun, M., Oh, S.J., Ha, H.J., Ryu, J.S. and Moon, D.H. (2003) High Radiochemical Synthesis of 3'-deoxy-3'-[18F] fluorothymidine using (5'-O-dimethoxytrityl-2'-deoxy-3'-O-nosyl-beta-D-threo pentafuranosyl)thymidine and Its 3-N-Boc Protected Analogue as a Labeling Precursor. Nuclear Medicine and Biology, 30, 151.
[18]  Bollineni, V.R., Kramer, G.M., Jansma, E.P., Liu, Y. and Oyen, W.J. (2016) A Systematic Review on [18F] FLT-PET Uptake as a Measure of Treatment Response in Cancer Patients. European Journal of Cancer, 55, 81-97.
https://doi.org/10.1016/j.ejca.2015.11.018

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133