全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Derivation of Maxwell’s Equations via the Covariance Requirements of the Special Theory of Relativity, Starting with Newton’s Laws

DOI: 10.4236/jamp.2019.79141, PP. 2052-2073

Keywords: Relativity, Maxwell’s Equations, Newton’s Laws, Covariance

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this paper is to establish a connection between Maxwell’s equations, Newton’s laws, and the special theory of relativity. This is done with a derivation that begins with Newton’s verbal enunciation of his first two laws. Derived equations are required to be covariant, and a simplicity criterion requires that the four-vector force on a charged particle be linearly related to the four-vector velocity. The connecting tensor has derivable symmetry properties and contains the electric and magnetic field vectors. The Lorentz force law emerges, and Maxwell’s equations for free space emerge with the assumption that the tensor and its dual must both satisfy first-order partial differential equations. The inhomogeneous extension yields a charge density and a current density as being the source of the field, and yields the law of conservation of charge. Newton’s third law is reinterpreted as a reciprocity statement, which requires that the charge in the source term can be taken as the same physical entity as that of the test particle and that both can be assigned the same units. Requiring covariance under either spatial inversions or time reversals precludes magnetic charge being a source of electromagnetic fields that exert forces on electric charges.

References

[1]  Einstein, A. (1905) Zur Elektrodynamik bewegter Körper. Annalen der Physik, 17, 891-921.
https://doi.org/10.1002/andp.19053221004
[2]  Lorentz, H.A., Einstein, A., Minkowski, H. and Weyl, H. (1952) The Principle of Relativity. Dover, New York.
[3]  Kilmister, C.W. (1970) Special Theory of Relativity. Pergamon, Oxford.
[4]  Minkowski, H. (1908) Die Grundgleichungen für die electromagnetischen Vorgänge in bewegten Körpen. Nachtrichten der K. Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-physikalische Klasse, 53-116.
[5]  Dyson, F.J. (1990) Feynman’s Proof of the Maxwell Equations. American Journal of Physics, 58, 209-211.
https://doi.org/10.1119/1.16188
[6]  Page, L. (1912) A Derivation of the Fundamental Relations of Electrodynamics from Those of Electrostatics. American Journal of Science, 34, 57-68.
https://doi.org/10.2475/ajs.s4-34.199.57
[7]  Page, L. and Adams, N.I. (1940) Electrodynamics. Van Nostrand, New York, 129-154.
[8]  Frisch, D.H. and Wilets, L. (1956) Development of the Maxwell-Lorentz Equations from Special Relativity and Gauss’s Law. American Journal of Physics, 24, 574-579.
https://doi.org/10.1119/1.1934322
[9]  Swann, W.F.G. (1926) New Deductions of the Electromagnetic Equations. Physical Review, 28, 531-544.
https://doi.org/10.1103/PhysRev.28.531
[10]  Elliott, R.S. (1966) Relativity and Electricity. IEEE Spectrum, 3, 140-152.
https://doi.org/10.1109/MSPEC.1966.5216743
[11]  Tessman, J.R. (1966) Maxwell—Out of Newton, Coulomb, and Einstein. American Journal of Physics, 34, 1048-1055.
https://doi.org/10.1119/1.1972453
[12]  Krefetz, E. (1970) A Derivation of Maxwell’s Equations. American Journal of Physics, 38, 513-516.
https://doi.org/10.1119/1.1976377
[13]  Feynman, R.P. (1964) Lorentz Transformations of the Fields. In: Feynman, R.P., Leighton, R.B. and Sands, M., Eds., The Feynman Lectures on Physics, Mainly Electromagnetism and Matter, Addison-Wesley, Reading, 26.
[14]  Podolsky, B. and Kunz, K.S. (1969) Fundamentals of Electrodynamics. Marcel Dekker, New York, 101-124.
[15]  Landau, L.D. and Lifshitz, E.M. (1975) The Classical Theory of Fields. Pergamon, Oxford, 14-19, 44-46, 60-62, 66-75.
[16]  Kobe, D.H. (1978) Derivation of Maxwell’s Equations from the Local Gauge Invariance of Quantum Mechanics. American Journal of Physics, 46, 342-348.
https://doi.org/10.1119/1.11327
[17]  Kobe, D.H. (1980) Derivation of Maxwell’s Equations from the Gauge Invariance of Classical Mechanics. American Journal of Physics, 48, 348-353.
https://doi.org/10.1119/1.12094
[18]  Kobe, D.H. (1984) Helmholtz Theorem for Antisymmetric Second-Rank Tensor Fields and Electromagnetism with Magnetic Monopoles. American Journal of Physics, 52, 354-358.
https://doi.org/10.1119/1.13668
[19]  Kobe, D.H. (1986) Generalization of Coulomb’s Law to Maxwell’s Equations Using Special Relativity. American Journal of Physics, 54, 631-636.
https://doi.org/10.1119/1.14521
[20]  Crater, H.W. (1994) General Covariance, Lorentz Covariance, the Lorentz Force, and Maxwell’s Equations. American Journal of Physics, 62, 923-931.
https://doi.org/10.1119/1.17682
[21]  Jefimenko, O.D. (1996) Derivation of Relativistic Force Transformation Equations from Lorentz Force Law. American Journal of Physics, 64, 618-620.
https://doi.org/10.1119/1.18165
[22]  Ton, T.-C. (1991) On the Time-Dependent, Generalized Coulomb, and Biot-Savart Laws. American Journal of Physics, 59, 520-528.
https://doi.org/10.1119/1.16812
[23]  Griffiths, D.J. and Heald, M.A. (1991) Time-Dependent Generalizations of the Biot-Savart and Coulomb Laws. American Journal of Physics, 59, 111-117.
https://doi.org/10.1119/1.16589
[24]  Crawford, F.S. (1992) Magnetic Monopoles, Galilean Invariance, and Maxwell’s Equations. American Journal of Physics, 60, 109-114.
https://doi.org/10.1119/1.16926
[25]  Neuenschwander, D.E. and Turner, B.N. (1992) Generalization of the Biot-Savart Law to Maxwell’s Equations. American Journal of Physics, 60, 35-38.
https://doi.org/10.1119/1.17039
[26]  Bork, A.M. (1963) Maxwell, Displacement Current, and Symmetry. American Journal of Physics, 31, 854-859.
https://doi.org/10.1119/1.1969140
[27]  Goedecke, G.H. (2000) On Electromagnetic Conservation Laws. American Journal of Physics, 68, 380-384.
https://doi.org/10.1119/1.19441
[28]  Hokkyo, N. (2004) Feynman’s Proof of Maxwell Equations and Yang’s Unification of Electromagnetic and Gravitational Aharonov-Bohm Effects. American Journal of Physics, 72, 345-347.
https://doi.org/10.1119/1.1617314
[29]  Newton, I. (1999) The Principia: Mathematical Principles of Natural Philosophy. University of California Press, Berkeley, 416-417.
[30]  Minkowski, H. (1909) Raum und Zeit. Physikalische Zeitschrift, 10, 104-111.
[31]  Bergmann, P.G. (1976) Introduction to the Theory of Relativity. Dover, New York, 47-120.
[32]  Einstein, A. (1916) Die Grundlagen der allgemeinen Relativitätstheorie. Annalen der Physik, Series 4, 49, 769-822.
https://doi.org/10.1002/andp.19163540702
[33]  Low, F.E. (1997) Classical Field Theory: Electromagnetism and Gravitation. Wiley, New York, 252-255, 259-260, 269-270.
[34]  Cunningham, E. (1909) The Principle of Relativity in Electrodynamics and an Extension Thereof. Proceedings of the London Mathematical Society, 8, 77-98.
https://doi.org/10.1112/plms/s2-8.1.77
[35]  Bateman, H. (1910) The Transformation of the Electrodynamical Equations. Proceedings of the London Mathematical Society, 8, 223-264.
https://doi.org/10.1112/plms/s2-8.1.223
[36]  Poincaré, H. (1906) Sur la dynamique de l’électron. Rendiconti del Circolo Matematico di Palermo, 21, 129-176.
https://doi.org/10.1007/BF03013466
[37]  Schwartz, H.M. (1971) Poincaré’s Rendiconti Paper on Relativity. Part I. American Journal of Physics, 39, 1277-1294. Part II, ibid., 40(6), 862-872 (June 1972). Part III, ibid., 440(9), 1282-1287 (September 1972).
[38]  Weinberg, S. (1995) The Quantum Theory of Fields. Vol. 1, Cambridge University Press, Cambridge, 55-58.
https://doi.org/10.1017/CBO9781139644167
[39]  Schwartz, M. (1987) Principles of Electrodynamics. Dover, New York, 127-129.
[40]  Heaviside, O. (1889) On the Electromagnetic Effects Due to the Motion of Electrification through a Dielectric. Philosophical Magazine, 27, 324-339.
https://doi.org/10.1080/14786448908628362
[41]  Lorentz, H.A. (1952) The Theory of Electrons. Dover, New York, 14.
[42]  Tolman, R.C. (1911) Note on the Derivation from the Principle of Relativity of the Fifth Fundamental Equation of the Maxwell-Lorentz Theory. Philosophical Magazine, Ser. 6, 21, 296-301.
https://doi.org/10.1080/14786440308637034
[43]  Einstein, A. (1951) Autobiographical Notes. In: Schilpp, P.A., Ed., Albert Einstein: Philosopher-Scientist, Tudor Publ., New York, 63.
[44]  Mø ller, C. (1952) The Theory of Relativity. Oxford University Press, Oxford, 113-114.
[45]  Levi-Civita, T. (1977) The Absolute Differential Calculus. Dover, New York, 158-160.
[46]  Synge, J.L. and Schild, A. (1978) Tensor Calculus. Dover, New York, 131-135.
[47]  Schreier, O. and Sperner, E. (1955) Modern Algebra and Matrix Theory. Chelsea, New York, 89.
[48]  Weil, J.F. (2002) Units of Measurement. In: McGraw-Hill Encyclopedia of Science and Technology, 9th Edition, Vol. 19, McGraw Hill, New York, 64-72.
[49]  Bailey, A.E. (2002) Electrical Units and Standards. In: McGraw-Hill Encyclopedia of Science and Technology, 9th Edition, Vol. 6, McGraw Hill, New York, 226-231.
[50]  Taylor, B.N. (2001) The International System of Units (SI). Natl. Inst. Stand. Technol. Spec. Publ. 330. U.S. Government Printing Office, Washington DC, 1-2, 6-7, 11, 18, 32-33.
[51]  Stratton, J.A. (1941) Electromagnetic Theory. McGraw-Hill, New York, 2-6.
[52]  Landau, L.D. and Lifshitz, E.M. (1960) Electrodynamics of Continuous Media. Pergamon, London, 288-289.
[53]  Morse, P.M. and Feshbach, H. (1953) Methods of Theoretical Physics. Vol. I, McGraw-Hill, New York, 804-806, 834-837.
[54]  Dixon, W.G. (1978) Special Relativity: The Foundation of Macroscopic Physics. Cambridge University Press, Cambridge, 89.
[55]  Gold, T. (1967) The Nature of Time. Cornell University Press, Ithaca, 216.
[56]  Rindler, W. (1989) Relativity and Electromagnetism: The Force on a Magnetic Monopole. American Journal of Physics, 57, 993-994.
https://doi.org/10.1119/1.15782

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133