全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Solving Intuitionistic Fuzzy Linear Programming Problem—II

DOI: 10.4236/ijis.2019.94006, PP. 93-110

Keywords: Fuzzy Linear Programming Problem (FLPP), Intuitionistic Fuzzy Set (IFS), Intuitionistic Fuzzy Number (IFN), Intuitionistic Fuzzy Linear Programming Problem (IFLPP)

Full-Text   Cite this paper   Add to My Lib

Abstract:

Under non-random uncertainty, a new idea of finding a possibly optimal solution for linear programming problem is examined in this paper. It is an application of the intuitionistic fuzzy set concept within scope of the existing fuzzy optimization. Here, we solve a linear programming problem (LPP) in an intuitionistic fuzzy environment and compare the result with the solution obtained from other existing techniques. In the process, the result of associated fuzzy LPP is also considered for a better understanding.

References

[1]  Atanassov, K. (1986) Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87-96.
https://doi.org/10.1016/S0165-0114(86)80034-3
[2]  Atanassov, K. (1999) Intuitionistic Fuzzy Sets. In: Theory and Applications, Physica-Verlag, Heidelberg, 1-137.
https://doi.org/10.1007/978-3-7908-1870-3_1
[3]  Atanassov, K. (1995) Ideas for Intuitionistic Fuzzy Sets Equations, Inequations and Optimization. Notes on Intuitionistic Fuzzy Sets, 1, 17-24.
https://doi.org/10.1007/978-3-7908-1870-3_1
[4]  Atanassov, K. (1994) New Operations Defined over the Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 61, 137-142.
https://doi.org/10.1016/0165-0114(94)90229-1
[5]  Bellman, R.E. and Zadeh, L.A. (1970) Decision Making in a Fuzzy Environment. Management Science, 17, 141-164.
https://doi.org/10.1287/mnsc.17.4.B141
[6]  Bector, C.R. and Chandra, S. (2005) Fuzzy Mathematical Programming and Fuzzy Matrix Games. In: Studies in Fuzziness and Soft Computing, Springer-Verlag, Berlin, Heidelberg, 57-94.
[7]  Negoita, C.V. (1981) The Current Interest in Fuzzy Optimization. Fuzzy Sets and Systems, 6, 261-269.
https://doi.org/10.1016/0165-0114(81)90004-X
[8]  Dubois, D. and Prade, H. (1980) Systems of Linear Fuzzy Constraints. Fuzzy Sets and Systems, 3, 37-48.
https://doi.org/10.1016/0165-0114(80)90004-4
[9]  Tanaka, H. and Asai, K. (1984) Fuzzy Linear Programming Problems with Fuzzy Numbers. Fuzzy Sets and Systems, 13, 1-10.
https://doi.org/10.1016/0165-0114(84)90022-8
[10]  Garg, H. (2013) An Approach for Analyzing Fuzzy System Reliability Using Particle Swarm Optimization and Intuitionistic Fuzzy Set Theory. Journal of Multiple-Valued Logic and Soft Computing, 21, 335-354.
[11]  Garg, H., Rani, M., Sharma, S.P. and Vishwakarma, Y. (2014) Bi-Objective Optimization of the Reliability-Redundancy Allocation Problem for Series-Parallel System. Journal of Manufacturing Systems, 33, 353-367.
https://doi.org/10.1016/j.jmsy.2014.02.008
[12]  Garg, H., Rani, M., Sharma, S.P. and Vishwakarma, Y. (2014) Intuitionistic Fuzzy Optimization Technique for Solving Multi-Objective Reliability Optimization Problems in Interval Environment. Expert Systems with Applications, 41, 3157-3167.
https://doi.org/10.1016/j.eswa.2013.11.014
[13]  Garg, H. (2016) A Novel Approach for Analyzing the Reliability of Series-Parallel System Using Credibility Theory and Different Types of Intuitionistic Fuzzy Numbers. Journal of Brazilian Society of Mechanical Sciences and Engineering, 38, 1021-1035.
https://doi.org/10.1007/s40430-014-0284-2
[14]  Garg, H. (2018) Some Arithmetic Operations on the Generalized Sigmoidal Fuzzy Numbers and Its Application. Granular Computing, 3, 9-25.
https://doi.org/10.1007/s41066-017-0052-7
[15]  Kabiraj, A., Nayak, P.K. and Raha, S. (2019) Solving Intuitionistic Fuzzy Linear Programming Problem. International Journal of Intelligence Science, 9, 44-58.
https://doi.org/10.4236/ijis.2019.91003
[16]  Ejegwa, P.A., Akowe, S.O., Otene, P.M. and Ikyule, J.M. (2014) An Overview on Intuitionistic Fuzzy Sets. International Journal of Scientific & Technology Research, 3, 142-145.
[17]  Dubey, D. and Mehra, A. (2011) Linear Programming with Triangular Intuitionistic Fuzzy Number. In: Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology, Atlantis Press, Paris, 563-569.
https://doi.org/10.2991/eusflat.2011.78
[18]  Parvathi, R. and Malathi, C. (2012) Intuitionistic Fuzzy Linear Optimization. Notes on Intuitionistic Fuzzy Sets, 18, 48-56.
[19]  Parvathi, R. and Malathi, C. (2012) Intuitionistic Fuzzy Linear Programming Problem. World Applied Sciences Journal, 17, 1802-1807.
[20]  Seikh, M.R., Nayak, P.K. and Pal, M. (2013) Notes on Triangular Intuitionistic Fuzzy Numbers. International Journal of Mathematics in Operational Research, 5, 446-465.
https://doi.org/10.1504/IJMOR.2013.054730
[21]  Mitchell. H.B. (2004) Ranking Intuitionistic Fuzzy Numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12, 377-386.
https://doi.org/10.1142/S0218488504002886
[22]  Nagoorgani, A. and Ponnalagu, K. (2013) An Approach to Solve Intuitionistic Fuzzy Linear Programming Problem Using Single Step Algorithm. International Journal of Pure and Applied Mathematics, 86, 819-832.
https://doi.org/10.12732/ijpam.v86i5.6
[23]  Nishad, A.K. and Singh, S.R. (2014) Linear Programming Problem with Intuitionistic Fuzzy Numbers. International Journal of Computer Applications, 106, 22-28.
[24]  Gani, A.N. and Abbas, S. (2014) A New Average Method for Solving Intuitionistic Fuzzy Transportation Problem. International Journal of Pure and Applied Mathematics, 93, 491-499.
https://doi.org/10.12732/ijpam.v93i4.1
[25]  Angelov, P.P. (1995) Intuitionistic Fuzzy Optimization. Notes of Intuitionistic Fuzzy Sets, 1, 123-129.
[26]  Angelov, P.P. (1997) Optimization in an Intuitinistic Fuzzy Enviornment. Fuzzy Sets and Systems, 86, 299-306.
https://doi.org/10.1016/S0165-0114(96)00009-7
[27]  Hussain, R.J. and Kumar, P.S. (2012) Algorithmic Approach for Solving Intuitionistic Fuzzy Transportation Problem. Applied Mathematical Sciences, 6, 3981-3989.
[28]  Hussain, R.J. and Kumar, P.S. (2012) The Transportation Problem in an Intuitionistic Fuzzy Environment. International Journal of Mathematics Research, 4, 411-420.
[29]  Hussain, R.J. and Kumar, P.S. (2013) An Optimal More-for-Less Solution of Mixed Constraints Intuitionistic Fuzzy Transportation Problems. International Journal of Contemporary Mathematical Sciences, 8, 565-576.
https://doi.org/10.12988/ijcms.2013.13056
[30]  Ye, J. (2011) Expected Value Method for Intuitionistic Trapezoidal Fuzzy Multicriteria Decision-Making Problems. Expert Systems with Applications, 38, 11730-11734.
https://doi.org/10.1016/j.eswa.2011.03.059
[31]  Wan, S. and Dong, J. (2014) A Possibility Degree Method for Interval-Valued Intuitionistic Fuzzy Multi-Attribute Group Decision Making. Journal of Computer and System Sciences, 80, 237-256.
https://doi.org/10.1016/j.jcss.2013.07.007
[32]  Gasimov, R.N. and Yenilmez, K. (2002) Solving Fuzzy Linear Programming Problems with Linear Membership Functions. Turkish Journal of Mathematics, 26, 375-396.
[33]  Thakre, P.A., Shelar, D.S. and Thakre, S.P. (2009) Solving Fuzzy Linear Programming Problem as Multi Objective Linear Programming Problem. Proceedings of the 2009 World Congress on Engineering, Volume II, London, 978-988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133