In this paper, an isogeometric error estimate for transport equation is obtained in 2D to prove the convergence of isogeometric method. The result that we have obtained, generalizes Ern result, got in finite elements method. For the time discretization, the two stage Heun scheme is used to prove this result. For a polynomial of degree k≥1, the order of convergence in space is 2 and in time is .
References
[1]
Hubbard, J. and Hubert, F. (2005) Calcul scientifique, de la théorie à la pratique. Université de Provence, Marseille.
[2]
Salsa, S. (2008) Partial Differential Equations in Action, from Modelling to Theory. Département de mathématiques polytechniques de Milan, Milan.
[3]
Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y. (2009) Isogeometric Analysis, toward Integration of CAD and FEA. John Wiley and Sons, Hoboken.
https://doi.org/10.1002/9780470749081
[4]
Bazilevs, Y., Beirao da Veiga, L., Cottrell, A., Hughes, T. and Sangalli, G. (2006) Isogeometric Analysis: Approximation, Stability and Error Estimates for H-Refined Meshes. University of Texas at Austin, Institute for Computational Engineering and Sciences, Dipartimento di Mathematica “F. Enriques”, Universita di Milano, Dipartimento di Mathematica “F. Casorati”, University of Pavia, Pavia.
[5]
Hughes, T.J.R., Reali, A. and Sangalli, G. (2008) Efficient Quadrature for NURBS Based Isogeometric Analysis. Elsevier, Amsterdam.
[6]
Duvigneau, R. (2013) Conception optimale en mécanique des fluides numériques: Approches hiérarchiques, robustes et isogeometriques. Université de Nice Sophia Antipolis, Antipolis.
[7]
Cockburn, B. and Shu, C.-W. (1989) TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws II: General Framework. Mathematics of Computation, 52, 411-435.
[8]
Cockburn, B., Lin, S. and Shu, C.-W. (1989) TVB Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws III: One-Dimensional Systems. Journal of Computational Physics, 84, 90-113.
https://doi.org/10.1016/0021-9991(89)90183-6
[9]
Cockburn, B., Hou, S. and Shu, C.-W. (1990) The Runge-Kutta Local Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV: The Multidimensional Case. Mathematics of Computation, 54, 545-581.
[10]
Cockburn, B., Karniadakis, G.E. and Shu, C.-W. (2000) Discontinuous Galerkin Methods—Theory, Computation and Applications. Lecture Notes in Computational Science and Engineering 11, Springer-Verlag, New York.
https://doi.org/10.1007/978-3-642-59721-3
[11]
Di Pietro, D.A. and Ern, A. (2012) Mathematical Aspects of Discontinuous Galerkin Methods. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-22980-0
[12]
Burman, E., Ern, A. and Fernandez, M.A. (2010) Explicit Runge-Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems. Society for Industrial and Applied Mathematics, 48, 2019-2042.
https://doi.org/10.1137/090757940
[13]
Johannessen, K.A. (2009) An Adaptive Isogeometric Finite Element Analysis. Master of Science in Physics and Mathematics, Norwegian University of Science and Technology, Trondheim.
[14]
Gahalaut, K.P.S. (2013) Isogeometric Analysis: Condition Number Estimates and Fast Solvers. PhD, Technisch-Naturwissenschaftliche Fakultät, Linz.
[15]
Farin, G. (1997) Curves and Surfaces for Computer Aided Geometric Design, a Practical Guide. Fourth Edition, Academic Press, Cambridge.
[16]
Evans, J. and Hughes, T. (2011) Explicit Trace Inequalities for Isogeometric Analysis and Parametric Hexahedral Finite Elements. The Institute for Computational Engineering and Sciences Report, the University of Texas, Austin.
https://doi.org/10.21236/ADA555335
[17]
Beirao da Veiga, L., Buffa, A., Sangalli, G. and Vazquez, R. (2014) Mathematical Analysis of Variational Isogeometric Methods. Cambridge University Press, Cambridge. https://doi.org/10.1017/S096249291400004X
[18]
Ern, A. and Guermond, J.L. (2004) Theory and Practice of Finite Elements. Springer-Verlag, Berlin.
[19]
Schumacher, L. (2013) Isogeometric Analysis for Scalar Convection Diffusion Equations. PhD Thesis, Mathematisch-Naturwissenschaftlicke Fakultat II Institut fur Mathematik, Mai.
[20]
Tagliabue, A., Dedè, L. and Quarteroni, A. (2012) Isogeometric Analysis and Error Estimates for High Order Partial Differential Equations in Fluid Dynamics. Mathematics Institute of Computational Science and Engineering Technical Report, October 2012.