Pumpkin seed (Cucurbita pepo L.) is a nutritionally
valuable food and a significant source of income globally. Pumpkin seeds are
rich in oil, protein, unsaturated fatty acids and tocopherols, which are
associated with improved human health. Understanding the genetic diversity
among pumpkin accessions varying in seed nutrition traits is necessary for
designing sound breeding strategies for developing superior cultivars. In the
current study, 26 simple sequence repeats (SSR) markers were used to assess genetic relatedness among 29 C.
pepo accessions varying in seed oil, seed protein, seed-coat phenotype, seed size and fatty
acid composition. The SSR markers revealed 102 alleles averaging 3.92 alleles
per loci and mean polymorphic information content (PIC) of 0.44. Eleven of the
markers had a PIC of ≥0.5. Ward dendrogram and principle component analysis
based on seed traits grouped the genotypes into two major clusters
corresponding to subspecies pepo and texana, with all the reduced-hull
accessions grouping within the former. Collectively, this data suggests wide
phenotypic (seed traits) and genotypic variation
within C. pepo that may be exploited
to develop superior reduced-hull cultivars.
References
[1]
Baxter, G.G., Murphy, K. and Paech, A. (2012) The Potential to Produce Pumpkin Seed for Processing in Northeast Victoria. Rural Industries Development Corporation, 11, 5-36.
[2]
Fruhwirth, G.O. and Hermetter, A. (2007) Seeds and Oil of the Styrian Oil Pumpkin: Components and Biological Activities. European Journal of Lipid Science and Technology, 109, 1128-1140. https://doi.org/10.1002/ejlt.200700105
[3]
Nakic, S.N., Rade, D., Skevin, D., Strucelj, D., Mokrovcak, Z. and Bartolic, M. (2006) Chemical Characteristics of Oils from Naked and Husk Seeds of Cucurbita pepo L. European Journal of Lipid Science and Technology, 108, 963-943.
https://doi.org/10.1002/ejlt.200600161
[4]
Lazos, E.S. (1992) Certain Functional Properties of Defatted Pumpkin Seed Flour. Plant Foods for Human Nutrition, 42, 257-273. https://doi.org/10.1007/BF02193934
[5]
Meru, G., Fu, Y., Leyva, D., Sarnoski, P. and Yagiz, Y. (2018) Phenotypic Relationships among Oil, Protein, Fatty Acid Composition and Seed Size Traits in Cucurbita pepo. Scientia Horticulturae, 233, 47-53.
https://doi.org/10.1016/j.scienta.2018.01.030
[6]
Wassom, J.J., Mikkelineni, V., Bohn, M.O. and Rocheford, T.R. (2008) QTL for Fatty Acid Composition of Maize Kernel Oil in Illinois High Oil × B73 Backcross-Derived Lines. Crop Science, 48, 69-78.
https://doi.org/10.2135/cropsci2007.04.0208
[7]
Lelley, T., Loy, B.L. and Murkovic, M. (2009) Hull-Less Oil Seed Pumpkin. In: Vollmann, J. and Rajcan, I., Eds., Oil Crops, Handbook of Plant Breeding, Springer, New York, 469-492. https://doi.org/10.1007/978-0-387-77594-4_16
[8]
Nesaretnam, K., Gomez, P.A., Selvaduray, K.R. and Razak. G.A. (2007) Tocotrienol Levels in Adipose Tissue of Benign and Malignant Breast Lumps in Patients in Malaysia. Asia Pacific Journal of Clinical Nutrition, 16, 498-504.
[9]
Stevenson, D.G., Eller, F.J., Wang, L., Jane, J.L., Wang, T. and Inglett, G.E. (2007) Oil and Tocopherol Content and Composition of Pumpkin Seed Oil in 12 Cultivars. Journal of Agricultural and Food Chemistry, 55, 4005-4013.
https://doi.org/10.1021/jf0706979
[10]
Thompson, G.R. and Grundy, S.M. (2005) History and Development of Plant Sterol and Stanol Esters for Cholesterol-Lowering Purposes. American Journal of Cardiology, 96, 3-9. https://doi.org/10.1016/j.amjcard.2005.03.013
[11]
Loy, J.B. (2004) Morpho-Physiological Aspects of Productivity and Quality in Squash and Pumpkins (Cucurbita spp.). Critical Reviews in Plant Sciences, 23, 337-363.
https://doi.org/10.1080/07352680490490733
[12]
Meru, G. and Fu, Y. (2018) Yield and Horticultural Performance of Naked-Seed Pumpkin in South Florida. EDIS, HS1323. https://edis.ifas.ufl.edu/hs1323
[13]
Decker, D.S. (1985) Numerical Analysis of Allozyme Variation in Cucurbita pepo. Economic Botany, 39, 300-309. https://doi.org/10.1007/BF02858800
[14]
Decker, D.S., Staub, J.E., Chung, S.M., Nakata, E. and Quemada, H.D. (2002) Diversity in Free-Living Populations of Cucurbita pepo (Cucurbitaceae) as Assessed by Random Amplified Polymorphic DNA. Systematic Botany, 27, 19-28.
[15]
Ferriol, M., Picó, B. and Nuez, F. (2003) Genetic Diversity of a Germplasm Collection of Cucurbita pepo Using SRAP and AFLP Markers. Theoretical and Applied Genetics, 107, 271-282. https://doi.org/10.1007/s00122-003-1242-z
[16]
Formisano, G., Roig, C., Esteras, C., Ercolano, M.R., Nuez, F., Monforte, A.J. and Picó, M.B. (2012) Genetic Diversity of Spanish Cucurbita pepo Landraces: An Unexploited Resource for Summer Squash Breeding. Genetic Resources and Crop Evolution, 59, 1169-1184. https://doi.org/10.1007/s10722-011-9753-y
[17]
Gong, L., Paris, H.S., Nee, M.H., Stift, G., Pachner, M., Vollmann, J. and Lelley, T. (2012) Genetic Relationships and Evolution in Cucurbita pepo (Pumpkin, Squash, Gourd) as Revealed by Simple Sequence Repeat Polymorphisms. Theoretical and Applied Genetics, 124, 875-891. https://doi.org/10.1007/s00122-011-1752-z
[18]
Paris, H.S., Doron-Faigenboim, A., Reddy, U.K., Donahoo, R. and Levi, A. (2015) Genetic Relationships in Cucurbita pepo (Pumpkin, Squash, Gourd) as Viewed with High Frequency Oligonucleotide-Targeting Active Gene (HFO-TAG) Markers. Genetic Resources and Crop Evolution, 62, 1095-1111.
https://doi.org/10.1007/s10722-015-0218-6
[19]
Paris, H.S., Yonash, N., Portnoy, V., Mozes-Daube, N., Tzuri, G. and Katzir, N. (2003) Assessment of Genetic Relationships in Cucurbita pepo (Cucurbitaceae) Using DNA Markers. Theoretical and Applied Genetics, 106, 971-978.
https://doi.org/10.1007/s00122-002-1157-0
[20]
Hodel, R.G.J., Gitzendanner, M.A., Germain-Aubrey, C.C., Liu, X., Crowl, A.A., Sun, M., Landis, J.B., Segovia-Salcedo, M.C., Douglas, N.A., Chen, S., Soltis, D.E. and Soltis, P.S. (2016) A New Resource for the Development of SSR Markers: Millions of Loci from a Thousand Plant Transcriptomes. Applications in Plant Sciences, 4, Article ID: 1600024. https://doi.org/10.3732/apps.1600024
[21]
Powell, W., Morgante, M., Andre, C., Hanafey, M., Vogel, J., Tingey, S. and Rafalski, A. (1996) The Comparison of RFLP, RAPD, AFLP and SSR (Microsatellite) Markers for Germplasm Analysis. Molecular Breeding, 2, 225-238.
https://doi.org/10.1007/BF00564200
[22]
Dagnelie, P. (1975) Multivariate Statistical Analysis. Les presses agronomiques de Gembloux, Gembloux.
[23]
Islam, M.R. (2004) Genetic Diversity in Irrigated Rice. Pakistan Journal of Biological Sciences, 2, 226-229. https://doi.org/10.3923/pjbs.2004.226.229
[24]
Gong, L., Stift, G., Kofler, R., Pachner, M. and Lelley, T. (2008) Microsatellites for the Genus Cucurbita and an SSR-Based Genetic Linkage Map of Cucurbita pepo L. Theoretical and Applied Genetics, 117, 37-48.
https://doi.org/10.1007/s00122-008-0750-2
[25]
Blacket, M.J., Robin, C., Good, R.T., Lee, S.F. and Miller, A.D. (2012) Universal Primers for Fluorescent Labelling of PCR Fragments—An Efficient and Cost-Effective Approach to Genotyping by Fluorescence. Molecular Ecology Resources, 12, 456-463.
https://doi.org/10.1111/j.1755-0998.2011.03104.x
[26]
Perrier, X. and Jacquemoud-Collet, J. (2006) Dissimilarity Analysis and Representation for Windows (DARwin). CIRAD, France, 15 November 2017.
http://darwin.cirad.fr/darwin
[27]
Ward, J.H. (1963) Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58, 236-244.
https://doi.org/10.1080/01621459.1963.10500845
[28]
Liu, K. and Muse, S.V. (2005) PowerMarker: An Integrated Analysis Environment for Genetic Marker Analysis. Bioinformatics, 21, 2128-2129.
https://doi.org/10.1093/bioinformatics/bti282
[29]
Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. (1980) Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Amer. Journal of Human Genetics, 32, 314-331.
[30]
Weir, B.S. (1996) Genetic Data Analysis II Methods for Discrete Population Genetic Data. Sinauer Associates Inc., Sunderland, MA.
[31]
R Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
[32]
Gong, L., Paris, H.S., Stift, G., Pachner, M., Vollmann, J. and Lelley, T. (2013) Genetic Relationships and Evolution in Cucurbita as Viewed with Simple Sequence Repeat Polymorphisms: The Centrality of C. okeechobeensis. Genetic Resources and Crop Evolution, 60, 1531-1546. https://doi.org/10.1007/s10722-012-9940-5
[33]
Verdone, M., Rao, R., Coppola, M. and Corrado, G. (2018) Identification of Zucchini Varieties in Commercial Food Products by DNA Typing. Food Control, 84, 197-204.
https://doi.org/10.1016/j.foodcont.2017.07.039
[34]
Paris, H.S. (2001) History of the Cultivar-Groups of Cucurbita pepo. In: Janick, J., Ed., Horticultural Reviews, John Wiley & Sons, Inc., Oxford, 71-170.
https://doi.org/10.1002/9780470650783.ch2
[35]
Michael, V., Moon, P. Fu, Y. and Meru, G. (2019) Genetic Diversity among Accessions of Cucurbita pepo Resistant to Phytophthora Crown Rot. HortScience, 54, 17-22.
https://doi.org/10.21273/HORTSCI13506-18