The notion of the holomorphic curvature for a Complex Finsler space (M,F) is defined with respect to the Chern complex linear connection on the pull-back tangent bundle. This paper is about the fundamental metric tensor, inverse tensor and as a special approach of the pull-back bundle is devoted to obtaining the holomorphic curvature of Complex Finsler Square metrics. Further, it proved that it is not a weakly Kähler.
References
[1]
Aldea, N. (2006) A Generalization of the Holomorphic Flag Curvature of Complex Finsler Spaces. Bulkan Journal of Geometry, Geometry and Its Applications, 11, 1-10.
[2]
Abate, M. and Petrizio, G. (1994) Complex Finsler Metrics: A Global Approach. Lecturer Notes in Math. 1591, Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0073980
[3]
Aikou, T. (2003) Projective Flatness of Complex Finsler Metrics. Publicationes Mathematicae Debrecen, 63, 343-362.
[4]
Munteanue, G. (2004) Complex Spaces in Finsler, Lagrange and Hamilton Geometries. Springer Science + Business Media, Dordrecht, 141.
https://doi.org/10.1007/978-1-4020-2206-7_6
[5]
Aldea, N. (2002) On Chern Complex Linear Connection. Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, 45, 119-131.
[6]
Sprio, A. (2001) The Structure Equations of a Complex Finsler Manifold. Asian Journal of Mathematics, 5, 291-326. https://doi.org/10.4310/AJM.2001.v5.n2.a2
[7]
Roopa, M.K. and Narasimhamurthy, S.K. (2018) η-Einstein Complex Finsler Randes Spaces. Journal of Mathematical and Statistical Analysis, 1, 301.
[8]
Purcuru, M. (2011) On -Complex Finsler Spaces with Kropina Metrics. Bulletin of the Transilvania University of Brasov, 4, 79-88.
[9]
Vanithalakshmi, S.M., Narasimhamurthy, S.K. and Roopa, M.K. (2018) On -Complex Finsler Space with Matsumoto Metrics. International Journal of Mathematics and Its Applications, 7, 23-30.
[10]
Boa, D., Chern, S.S. and Shen, Z. (2000) An Introduction to Riemannian Finsler Geom. Graduate Texts in Mathematics, Book 200, Springer-Verlag, Berlin.