全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

There Is No Standard Model of ZFC and ZFC2 with Henkin Semantics

DOI: 10.4236/apm.2019.99034, PP. 685-744

Keywords: G?del Encoding, Completion of ZFC, Russell’s Paradox, ω-Model, Henkin Semantics, Full Second-Order Semantic, Strongly Inaccessible Cardinal

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this article we proved so-called strong reflection principles corresponding to formal theories Th which has omega-models or nonstandard model with standard part. A possible generalization of Löb’s theorem is considered. Main results are: 1) \"\", 2) \"\", 3) \"\", 4) \"\", 5) let k be inaccessible cardinal then \"\".

References

[1]  Nelson, E. (2011) Warning Signs of a Possible Collapse of Contemporary Mathematics. In: Heller, M. and Hugh Woodin, W., Ed., Infinity: New Research Frontiers, Cambridge University Press, Cambridge, 75-85.
https://books.google.co.il/books?hl=en&lr=&id=PVNbIGS37wMC&oi=fnd&pg=PA76&ots=-aw1XHf3Xf&sig=fgKPoccDIFUtFYTCgz1XVaO8_hg&redir_esc=y#v=onepage&q&f=false
[2]  Foukzon, J. (2013) Generalized Lob’s Theorem. Strong Reflection Principles and Large Cardinal Axioms. Consistency Results in Topology. ArXiv: 1301.5340.
https://arxiv.org/abs/1301.5340
[3]  Lemhoff, R. (2016) 2016 European Summer Meeting of the Association for Symbolic Logic. Logic COLLOQUIUM’16, Leeds, UK, July 31-August 6, 2016. The Bulletin of Symbolic Logic, 23, 213-216.
https://www.jstor.org/stable/44259451?seq=1#page_scan_tab_contents
[4]  Foukzon, J. and Men’kova, E.R. (2013) Generalized Löb’s Theorem. Strong Reflection Principles and Large Cardinal Axioms. Advances in Pure Mathematics, 3, 368-373.
https://doi.org/10.4236/apm.2013.33053
[5]  Foukzon, J. (2015) Inconsistent Countable Set in Second Order ZFC and Nonexistence of the Strongly Inaccessible Cardinals. British Journal of Mathematics & Computer Science, 9, 380-393.
https://doi.org/10.9734/BJMCS/2015/16849
http://www.sciencedomain.org/abstract/9622
[6]  Foukzon, J. and Men’kova, E.R. (2019) There Is No Standard Model of ZFC and ZFC2. In: Advances in Mathematics and Computer Science, Volume 1, Book Publisher International.
http://bp.bookpi.org/index.php/bpi/catalog/view/46/221/408-1
[7]  Henkin, L. (1950) Completeness in the Theory of Types. Journal of Symbolic Logic, 15, 81-91.
https://doi.org/10.2307/2266967
[8]  Cohen, P. (1966) Set Theory and the Continuum Hypothesis. W. A. Benjamin, Inc., New York.
[9]  Gödel, K. (1968) Consistency of the Continuum Hypothesis. In: Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, 69 p.
[10]  Rossberg, M. (2004) First-Order Logic, Second-Order Logic, and Completeness. In: Hendricks, V., et al., Eds., First-Order Logic Revisited, Logos-Verlag, Berlin, 303-321.
http://logic.amu.edu.pl/images/4/46/Completenessrossberg.pdf
[11]  Shapiro, S. (2000) Foundations without Foundationalism: A Case for Second-Order Logic. Oxford University Press, Oxford.
[12]  Rayo, A. and Uzquiano, G. (1999) Toward a Theory of Second-Order Consequence. Notre Dame Journal of Formal Logic, 40, 315-325.
https://doi.org/10.1305/ndjfl/1022615612
[13]  Vaananen, J. (2001) Second-Order Logic and Foundations of Mathematics. Bulletin of Symbolic Logic, 7, 504-520.
https://doi.org/10.2307/2687796
[14]  Friedman, H. (1973) Countable Models of Set Theories. In: Mathias, A.R.D. and Rogers, H., Eds., Cambridge Summer School in Mathematical Logic. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 539-573.
https://doi.org/10.1007/BFb0066789
[15]  Magidor, M., Shelah, S. and Stavi, J. (1983) On the Standard Part of Nonstandard Models of Set Theory. The Journal of Symbolic Logic, 48, 33-38.
https://doi.org/10.2307/2273317
[16]  Bovykin, A. (2000) On Order-Types of Models of Arithmetic. In: Logic and Algebra, Contemporary Mathematics Series of the AMS, Volume 302, American Mathematical Society, Providence, RI, 275-285.
https://doi.org/10.1090/conm/302/05055
[17]  Mendelson, E. (1997) Introduction to Mathematical Logic. Springer, New York.
[18]  Takeuti, G. (2013) Proof Theory. 2nd Edition. Dover Publications, New York.
[19]  Quine, W.V. (1937) New Foundations for Mathematical Logic. The American Mathematical Monthly, 44, 70-80.
https://doi.org/10.2307/2300564
[20]  Hailperin, T. (1944) A Set of Axioms for Logic. Journal of Symbolic Logic, 9, 1-19.
https://doi.org/10.2307/2267307
[21]  Montague, R. (1965) Set Theory and Higher-Order Logic. Studies in Logic and the Foundations of Mathematics, 40, 131-148.
https://doi.org/10.1016/S0049-237X(08)71686-0
[22]  Foukzon, J. (2015) Non-Archimedean Analysis on the Extended Hyperreal Line and the Solution of Some Very Old Transcendence Conjectures over the Field . Advances in Pure Mathematics, 5, 587-628.
https://arxiv.org/abs/0907.0467
https://doi.org/10.4236/apm.2015.510056
[23]  Foukzon, J. (2013) An Possible Generalization of the Löb’s Theorem. AMS Sectional Meeting AMS Special Session, Spring Western Sectional Meeting University of Colorado Boulder, Boulder, CO, 13-14 April 2013.
http://www.ams.org/amsmtgs/2210_abstracts/1089-03-60.pdf
[24]  Foukzon, J. (2013) Strong Reflection Principles and Large Cardinal Axioms. Fall Southeastern Sectional Meeting University of Louisville, Louisville, KY, 5-6 October 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133