全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Convolution Integrals and a Mirror Theorem from Toric Fiber Geometry

DOI: 10.4236/apm.2019.99033, PP. 637-684

Keywords: Gromov-Witten Invariant, Quantum Cohomology, Fixed-Point Localization, Birational Geometry

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let E be a toric fibration arising from symplectic reduction of a direct sum of complex line bundles over (almost) Kähler base B. Then each torus-fixed point of the toric manifold fiber defines a section of the fibration. Let La be convex line bundles over B, Aa smooth divisors of B arising as the zero loci of generic sections of La , and \"\" a particular fixed-point section of E. Further assume the {Aa} to be mutually disjoint. The manifold \"\" is a new manifold with tautological line bundles over new projective spaces in the geometry, where previously there was a simpler vector bundle in the given local geometry (Section 1.5). Thus, we compute genus-0 Gromov-Witten invariants of \"\" in terms of genus-0 Gromov-Witten invariants of B and of {Aa}, the matrix used for the symplectic reduction description of the fiber of the toric fibration EB, and the restriction maps \"\". The proofs utilize the fixed-point localization technique describing the geometry of \"\" and its genus-0 Gromov-Witten theory, as well as the Quantum Lefschetz theorem relating the genus-0 Gromov-Witten theory of A with that of B.

References

[1]  Coates, T. and Givental, A. (2007) Quantum Riemann-Roch, Lefschetz and Serre. Annals of Mathematics, 165, 15-53.
https://doi.org/10.4007/annals.2007.165.15
[2]  Barannikov, S. (2001) Quantum Periods-I. Semi-Infinite Variations of Hodge Structures. International Mathematics Research Notices, 2001, 1243-1264.
https://doi.org/10.1155/S1073792801000599
[3]  Givental, A. (2004) Symplectic Geometry of Frobenius Structures. In: Hertling, K. and Marcolli, M., Eds., Frobenius Manifolds. Aspects of Mathematics, Vieweg, Wiesbaden, 91-112.
https://doi.org/10.1007/978-3-322-80236-1_4
[4]  Getzler, E. (2004) The Jet-Space of a Frobenius Manifold and Higher-Genus Gromov-Witten Invariants. Frobenius Manifolds, Aspects Math., E36, 45.
[5]  Givental, A. (2001) Gromov-Witten Invariants and Quantization of Quadratic Hamiltonians. Moscow Mathematical Journal, 1, 551-568.
https://doi.org/10.17323/1609-4514-2001-1-4-551-568
[6]  Givental, A. (1998) A Mirror Theorem for Toric Complete Intersections. In: Kashiwara, M., Matsuo, A., Saito, K. and Satake, I., Eds., Topological Field Theory, Primitive Forms and Related Topics. Progress in Mathematics, Birkhäuser, Boston, MA, 141-175.
https://doi.org/10.1007/978-1-4612-0705-4_5
[7]  Iritani, H. (2008) Quantum D-Modules and Generalized Mirror Transformations. Topology, 47, 225-276.
https://doi.org/10.1016/j.top.2007.07.001
[8]  Brown, J. (2014) Gromov-Witten Invariants of Toric Fibrations. International Mathematics Research Notices, 2014, 5437-5482.
https://doi.org/10.1093/imrn/rnt030
[9]  Atiyah, M.F. (1982) Convexity and Commuting Hamiltonians. Bulletin of the London Mathematical Society, 14, 1-15.
https://doi.org/10.1112/blms/14.1.1
[10]  Guillemin, V. and Sternberg, S. (1982) Convexity Properties of the Moment Mapping. Inventiones Mathematicae, 67, 491-513.
https://doi.org/10.1007/BF01398933
[11]  Audin, M. (2004) Torus Actions on Symplectic Manifolds. 2nd Edition, Birkhäuser Verlag, Basel, Progress in Mathematics, 93.
https://doi.org/10.1007/978-3-0348-7960-6
[12]  Cannas da Silva, A. (2008) Lectures on Symplectic Geometry. Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-45330-7
[13]  Elezi, A. (2005) A Mirror Conjecture for Projective Bundles. International Mathematics Research Notices, 2005, 3445-3458.
https://doi.org/10.1155/IMRN.2005.3445
[14]  Givental, A. (2006) Gromov-Witten Invariants of Symplectic Quotients. A Lecture at MSRI.
[15]  Griffiths, P. and Harris, G. (1994) Principles of Algebraic Geometry. John Wiley & Sons, Inc., New York.
https://doi.org/10.1002/9781118032527
[16]  Lee, Y.P. (2001) Quantum Lefschetz Hyperplane Theorem. Inventiones Mathematicae, 145, 121-149.
https://doi.org/10.1007/s002220100145
[17]  Gathmann, A. (2003) Relative Gromov-Witten Invariants and the Mirror Formula. Mathematische Annalen, 325, 393-412.
https://doi.org/10.1007/s00208-002-0345-1
[18]  Graber, T. and Pandharipande, R. (1999) Localization of Virtual Classes. Inventiones Mathematicae, 135, 487-518.
https://doi.org/10.1007/s002220050293
[19]  Kontsevich, M. (1995) Enumeration of Rational Curves via Torus Actions. In: Dijkgraaf, R.H., Faber, C.F. and van der Geer, G.B.M., Eds., The Moduli Space of Curves. Progress in Mathematics, Birkhäuser Boston, Boston, MA, 335-368.
https://doi.org/10.1007/978-1-4612-4264-2_12

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133