全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Kinases: Understanding Their Role in HIV Infection

DOI: 10.4236/wja.2019.93011, PP. 142-160

Keywords: HIV, AIDS, Kinases, IPA, NF-κB

Full-Text   Cite this paper   Add to My Lib

Abstract:

Antiviral drugs currently on the market primarily target proteins encoded by specific viruses. The drawback of these drugs is that they lack antiviral mechanisms that account for resistance or viral mutation. Thus, there is a pressing need for researchers to explore and investigate new therapeutic agents with other antiviral strategies. Viruses such as the human immunodeficiency virus (HIV) alter canonical signaling pathways to create a favorable biochemical environment for infectivity. We used Qiagen Ingenuity Pathway Analysis (IPA) software to review the function of several cellular kinases and the resulting perturbed signaling pathways during HIV infection such as NF-κB signaling. These host cellular kinases such as ADK, PKR, MAP3K11 are involved during HIV infection at various stages of the life cycle. Additionally IPA analysis indicated that these modified host cellular kinases are known to have interactions with each other especially AKT1, a serine/threonine kinase involved in multiple pathways. We present a list of cellular host kinases and other proteins that interact with these kinases. This approach to understanding the relationship between HIV infection and kinase activity may introduce new drug targets to arrest HIV infectivity.

References

[1]  Shors, T. (2013) Understanding Viruses. Jones & Bartlett Learning, Burlington.
[2]  Center for Disease Control (CDC) (2019) About HIV/AIDS.
https://www.cdc.gov/hiv/basics/whatishiv.html
[3]  Knipe, D.M. and Howley, P.M. (2013) Fields Virology. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia.
[4]  Barre-Sinoussi, F., Ross, A.L. and Delfraissy, J.F. (2013) Past, Present and Future: 30 Years of HIV Research. Nature Reviews Microbiology, 11, 877-883. https://doi.org/10.1038/nrmicro3132
[5]  Fields, B.N., Knipe, D.M., Howley, P.M. and Griffin, D.E. (2001) Fields Virology. Lippincott Williams & Wilkins, Philadelphia.
[6]  Healey, J. (2011) HIV and AIDS. Spinney Press, Thirroul.
[7]  Cockerell, C.J., Hall, B.J. and Hall, J.C. (2011) HIV/AIDS in the Post-HAART Era: Manifestations, Treatment, and Epidemiology. People’s Medical Publishing House USA Ltd. [PMPH], Shelton.
[8]  Barre-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., Rozenbaum, W. and Montagnier, L. (1983) Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (AIDS). Science, 220, 868-871. https://doi.org/10.1126/science.6189183
[9]  World Health Organization (WHO) (2019) Data and Statistics. https://www.who.int/hiv/data/en
[10]  Fettig, J., Swaminathan, M., Murrill, C.S. and Kaplan, J.E. (2014) Global Epidemiology of HIV. Infectious Disease Clinics of North America, 28, 323-337.
https://doi.org/10.1016/j.idc.2014.05.001
[11]  Coffin, J.M., Hughes, S.H. and Varmus, H. (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Plainview.
[12]  Mahlknecht, U., Dichamp, I., Varin, A., Van Lint, C. and Herbein, G. (2008) NF-kappaB-Dependent Control of HIV-1 Transcription by the Second Coding Exon of Tat in T Cells. Journal of Leukocyte Biology, 83, 718-727. https://doi.org/10.1189/jlb.0607405
[13]  Kinoshita, S., Chen, B.K., Kaneshima, H. and Nolan, G.P. (1998) Host Control of HIV-1 Parasitism in T Cells by the Nuclear Factor of Activated T Cells. Cell, 95, 595-604.
https://doi.org/10.1016/S0092-8674(00)81630-X
[14]  National Institute of Health (NIH) (2019) HIV Treatment: The Basics: Understanding HIV/AIDS AIDSinfo.
[15]  Falkenhagen, A. and Joshi, S. (2018) Genetic Strategies for HIV Treatment and Prevention. Molecular Therapy—Nucleic Acids, 13, 514-533. https://doi.org/10.1016/j.omtn.2018.09.018
[16]  Scherer, L., Rossi, J.J. and Weinberg, M.S. (2007) Progress and Prospects: RNA-Based Therapies for Treatment of HIV Infection. Gene Therapy, 14, 1057-1064.
https://doi.org/10.1038/sj.gt.3302977
[17]  Gu, W.G. (2015) Genome Editing-Based HIV Therapies. Trends in Biotechnology, 33, 172-179.
https://doi.org/10.1016/j.tibtech.2014.12.006
[18]  Manning, G., Whyte, D.B., Martinez, R., Hunter, T. and Sudarsanam, S. (2002) The Protein Kinase Complement of the Human Genome. Science, 298, 1912-1934.
https://doi.org/10.1126/science.1075762
[19]  Ubersax, J.A. and Ferrell, J.E. (2007) Mechanisms of Specificity in Protein Phosphorylation. Nature Reviews Molecular Cell Biology, 8, 530-541. https://doi.org/10.1038/nrm2203
[20]  Schlessinger, J. (2014) Receptor Tyrosine Kinases: Legacy of the First Two Decades. Cold Spring Harbor Perspectives in Biology, 6, a008912. https://doi.org/10.1101/cshperspect.a008912
[21]  Lachmann, A. and Ma’ayan, A. (2009) KEA: Kinase Enrichment Analysis. Bioinformatics, 25, 684-686. https://doi.org/10.1093/bioinformatics/btp026
[22]  Schor, S. and Einav, S. (2018) Repurposing of Kinase Inhibitors as Broad-Spectrum Antiviral Drugs. DNA and Cell Biology, 37, 63-69. https://doi.org/10.1089/dna.2017.4033
[23]  De Clercq, E. and Li, G. (2016) Approved Antiviral Drugs over the Past 50 Years. Clinical Microbiology Reviews, 29, 695-747. https://doi.org/10.1128/CMR.00102-15
[24]  Boison, D. (2013) Adenosine Kinase: Exploitation for Therapeutic Gain. Pharmacological Reviews, 65, 906-943. https://doi.org/10.1124/pr.112.006361
[25]  Linden, J. (2005) Adenosine in Tissue Protection and Tissue Regeneration. Molecular Pharmacology, 67, 1385-1387. https://doi.org/10.1124/mol.105.011783
[26]  NIH U.S. National Library of Medicine (2019) Home—ClinicalTrials.gov.
[27]  Manning, B.D. and Cantley, L.C. (2007) AKT/PKB Signaling: Navigating Downstream. Cell, 129, 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
[28]  Ozes, O.N., Mayo, L.D., Gustin, J.A., Pfeffer, S.R., Pfeffer, L.M. and Donner, D.B. (1999) NF-kappaB Activation by Tumour Necrosis Factor Requires the Akt Serine-Threonine Kinase. Nature, 401, 82-85. https://doi.org/10.1038/43466
[29]  Brass, A.L., Dykxhoorn, D.M., Benita, Y., Yan, N., Engelman, A., Xavier, R.J., Lieberman, J. and Elledge, S.J. (2008) Identification of Host Proteins Required for HIV Infection through a Functional Genomic Screen. Science, 319, 921-926. https://doi.org/10.1126/science.1152725
[30]  Zhou, H., Xu, M., Huang, Q., Gates, A.T., Zhang, X.D., Castle, J.C., Stec, E., Ferrer, M., Strulovici, B., Hazuda, D.J. and Espeseth, A.S. (2008) Genome-Scale RNAi Screen for Host Factors Required for HIV Replication. Cell Host Microbe, 4, 495-504.
https://doi.org/10.1016/j.chom.2008.10.004
[31]  Nehme, Z., Pasquereau, S. and Herbein, G. (2019) Control of Viral Infections by Epigenetic-Targeted Therapy. Clinical Epigenetics, 11, 55. https://doi.org/10.1186/s13148-019-0654-9
[32]  Pasquereau, S., Kumar, A., Abbas, W. and Herbein, G. (2018) Counteracting Akt Activation by HIV Protease Inhibitors in Monocytes/Macrophages. Viruses, 10, 190.
https://doi.org/10.3390/v10040190
[33]  Krejsgaard, T., Vetter-Kauczok, C.S., Woetmann, A., Kneitz, H., Eriksen, K.W., Lovato, P., Zhang, Q., Wasik, M.A., Geisler, C., Ralfkiaer, E., Becker, J.C. and Odum, N. (2009) Ectopic Expression of B-Lymphoid Kinase in Cutaneous T-Cell Lymphoma. Blood, 113, 5896-5904. https://doi.org/10.1182/blood-2008-09-181024
[34]  Konig, R., Zhou, Y., Elleder, D., Diamond, T.L., Bonamy, G.M., Irelan, J.T., Chiang, C.Y., Tu, B.P., De Jesus, P.D., Lilley, C.E., Seidel, S., Opaluch, A.M., Caldwell, J.S., Weitzman, M.D., Kuhen, K.L., Bandyopadhyay, S., Ideker, T., Orth, A.P., Miraglia, L.J., Bushman, F.D., Young, J.A. and Chanda, S.K. (2008) Global Analysis of Host-Pathogen Interactions That Regulate Early-Stage HIV-1 Replication. Cell, 135, 49-60. https://doi.org/10.1016/j.cell.2008.07.032
[35]  Edwards, M.C., Wong, C. and Elledge, S.J. (1998) Human Cyclin K, a Novel RNA Polymerase II-Associated Cyclin Possessing Both Carboxy-Terminal Domain Kinase and Cdk-Activating Kinase Activity. Molecular and Cellular Biology, 18, 4291-4300. https://doi.org/10.1128/MCB.18.7.4291
[36]  Baek, K., Brown, R.S., Birrane, G. and Ladias, J.A. (2007) Crystal Structure of Human Cyclin K, a Positive Regulator of Cyclin-Dependent Kinase 9. Journal of Molecular Biology, 366, 563-573. https://doi.org/10.1016/j.jmb.2006.11.057
[37]  Khan, S.Z. and Mitra, D. (2011) Cyclin K Inhibits HIV-1 Gene Expression and Replication by Interfering with Cyclin-Dependent Kinase 9 (CDK9)-Cyclin T1 Interaction in Nef-Dependent Manner. The Journal of Biological Chemistry, 286, 22943-22954.
https://doi.org/10.1074/jbc.M110.201194
[38]  Sadler, A.J. and Williams, B.R. (2007) Structure and Function of the Protein Kinase R. Current Topics in Microbiology and Immunology, 316, 253-292.
https://doi.org/10.1007/978-3-540-71329-6_13
[39]  Burgess, H.M. and Mohr, I. (2015) Cellular 5’-3’ mRNA Exonuclease Xrn1 Controls Double-Stranded RNA Accumulation and Anti-Viral Responses. Cell Host Microbe, 17, 332-344.
https://doi.org/10.1016/j.chom.2015.02.003
[40]  Cai, R., Carpick, B., Chun, R.F., Jeang, K.T. and Williams, B.R. (2000) HIV-I TAT Inhibits PKR Activity by Both RNA-Dependent and RNA-Independent Mechanisms. Archives of Biochemistry and Biophysics, 373, 361-367. https://doi.org/10.1006/abbi.1999.1583
[41]  Yoon, C.H., Kim, S.Y., Byeon, S.E., Jeong, Y., Lee, J., Kim, K.P., Park, J. and Bae, Y.S. (2015) p53-Derived Host Restriction of HIV-1 Replication by Protein Kinase R-Mediated Tat Phosphorylation and Inactivation. Journal of Virology, 89, 4262-4280.
https://doi.org/10.1128/JVI.03087-14
[42]  Sanghvi, V.R. and Steel, L.F. (2011) The Cellular TAR RNA Binding Protein, TRBP, Promotes HIV-1 Replication Primarily by Inhibiting the Activation of Double-Stranded RNA-Dependent Kinase PKR. Journal of Virology, 85, 12614-12621. https://doi.org/10.1128/JVI.05240-11
[43]  Clerzius, G., Gelinas, J.F., Daher, A., Bonnet, M., Meurs, E.F. and Gatignol, A. (2009) ADAR1 Interacts with PKR during Human Immunodeficiency Virus Infection of Lymphocytes and Contributes to Viral Replication. Journal of Virology, 83, 10119-10128.
https://doi.org/10.1128/JVI.02457-08
[44]  Guccione, M., Ettari, R., Taliani, S., Da Settimo, F., Zappala, M. and Grasso, S. (2016) G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives. Journal of Medicinal Chemistry, 59, 9277-9294. https://doi.org/10.1021/acs.jmedchem.5b01939
[45]  Asai, D., Murata, M., Toita, R., Kawano, T., Nakashima, H. and Kang, J.H. (2016) Role of Amino Acid Residues Surrounding the Phosphorylation Site in Peptide Substrates of G Protein-Coupled Receptor Kinase 2 (GRK2). Amino Acids, 48, 2875-2880.
https://doi.org/10.1007/s00726-016-2345-6
[46]  Lock, P., Ralph, S., Stanley, E., Boulet, I., Ramsay, R. and Dunn, A.R. (1991) Two Isoforms of Murine Hck, Generated by Utilization of Alternative Translational Initiation Codons, Exhibit Different Patterns of Subcellular Localization. Molecular and Cellular Biology, 11, 4363-4370.
https://doi.org/10.1128/MCB.11.9.4363
[47]  Ziegler, S.F., Marth, J.D., Lewis, D.B. and Perlmutter, R.M. (1987) Novel Protein-Tyrosine Kinase Gene (hck) Preferentially Expressed in Cells of Hematopoietic Origin. Molecular and Cellular Biology, 7, 2276-2285. https://doi.org/10.1128/MCB.7.6.2276
[48]  Poh, A.R., O’Donoghue, R.J. and Ernst, M. (2015) Hematopoietic Cell Kinase (HCK) as a Therapeutic Target in Immune and Cancer Cells. Oncotarget, 6, 15752-15771.
https://doi.org/10.18632/oncotarget.4199
[49]  Trible, R.P., Emert-Sedlak, L. and Smithgall, T.E. (2006) HIV-1 Nef Selectively Activates Src Family Kinases Hck, Lyn, and c-Src through Direct SH3 Domain Interaction. The Journal of Biological Chemistry, 281, 27029-27038. https://doi.org/10.1074/jbc.M601128200
[50]  Lee, J.H., Ostalecki, C., Zhao, Z., Kesti, T., Bruns, H., Simon, B., Harrer, T., Saksela, K. and Baur, A.S. (2018) HIV Activates the Tyrosine Kinase Hck to Secrete ADAM Protease-Containing Extracellular Vesicles. EBioMedicine, 28, 151-161. https://doi.org/10.1016/j.ebiom.2018.01.004
[51]  Lambert, A.A., Gilbert, C., Richard, M., Beaulieu, A.D. and Tremblay, M.J. (2008) The C-Type Lectin Surface Receptor DCIR Acts as a New Attachment Factor for HIV-1 in Dendritic Cells and Contributes to Trans- and Cis-Infection Pathways. Blood, 112, 1299-1307.
https://doi.org/10.1182/blood-2008-01-136473
[52]  Lambert, A.A., Barabe, F., Gilbert, C. and Tremblay, M.J. (2011) DCIR-Mediated Enhancement of HIV-1 Infection Requires the ITIM-Associated Signal Transduction Pathway. Blood, 117, 6589-6599. https://doi.org/10.1182/blood-2011-01-331363
[53]  Hassaine, G., Courcoul, M., Bessou, G., Barthalay, Y., Picard, C., Olive, D., Collette, Y., Vigne, R. and Decroly, E. (2001) The Tyrosine Kinase Hck Is an Inhibitor of HIV-1 Replication Counteracted by the Viral vif Protein. The Journal of Biological Chemistry, 276, 16885-16893. https://doi.org/10.1074/jbc.M009076200
[54]  Gallo, K.A., Mark, M.R., Scadden, D.T., Wang, Z., Gu, Q. and Godowski, P.J. (1994) Identification and Characterization of SPRK, a Novel src-Homology 3 Domain-Containing Proline-Rich Kinase with Serine/Threonine Kinase Activity. The Journal of Biological Chemistry, 269, 15092-15100.
[55]  Tibbles, L.A., Ing, Y.L., Kiefer, F., Chan, J., Iscove, N., Woodgett, J.R. and Lassam, N.J. (1996) MLK-3 Activates the SAPK/JNK and p38/RK Pathways via SEK1 and MKK3/6. The EMBO Journal, 15, 7026-7035. https://doi.org/10.1002/j.1460-2075.1996.tb01094.x
[56]  Amako, Y., Igloi, Z., Mankouri, J., Kazlauskas, A., Saksela, K., Dallas, M., Peers, C. and Harris, M. (2013) Hepatitis C Virus NS5A Inhibits Mixed Lineage Kinase 3 to Block Apoptosis. The Journal of Biological Chemistry, 288, 24753-24763. https://doi.org/10.1074/jbc.M113.491985
[57]  Nguyen, D.G., Yin, H., Zhou, Y., Wolff, K.C., Kuhen, K.L. and Caldwell, J.S. (2007) Identification of Novel Therapeutic Targets for HIV Infection through Functional Genomic cDNA Screening. Virology, 362, 16-25. https://doi.org/10.1016/j.virol.2006.11.036
[58]  Yuan, X., Wu, H., Bu, H., Zhou, J. and Zhang, H. (2019) Targeting the Immunity Protein Kinases for Immuno-Oncology. European Journal of Medicinal Chemistry, 163, 413-427.
https://doi.org/10.1016/j.ejmech.2018.11.072
[59]  Klatt, A., Zhang, Z., Kalantari, P., Hankey, P.A., Gilmour, D.S. and Henderson, A.J. (2008) The Receptor Tyrosine Kinase RON Represses HIV-1 Transcription by Targeting RNA Polymerase II Processivity. The Journal of Immunology, 180, 1670-1677.
https://doi.org/10.4049/jimmunol.180.3.1670
[60]  Manser, E., Leung, T., Salihuddin, H., Zhao, Z.S. and Lim, L. (1994) A Brain Serine/Threonine Protein Kinase Activated by Cdc42 and Rac1. Nature, 367, 40-46.
https://doi.org/10.1038/367040a0
[61]  Huang, H.W., Zhang, X.Y., Song, P.L., Jiang, H.L., Li, W., Wang, P.L., Wang, J. and Liu, F.N. (2018) Old Drug New Tricks: Chlorhexidine Acts as a Potential Allosteric Inhibitor toward PAK1. Biochemical and Biophysical Research Communications, 495, 728-732.
https://doi.org/10.1016/j.bbrc.2017.11.087
[62]  Fackler, O.T., Lu, X., Frost, J.A., Geyer, M., Jiang, B., Luo, W., Abo, A., Alberts, A.S. and Peterlin, B.M. (2000) p21-Activated Kinase 1 Plays a Critical Role in Cellular Activation by Nef. Molecular and Cellular Biology, 20, 2619-2627.
https://doi.org/10.1128/MCB.20.7.2619-2627.2000
[63]  Kouwenhoven, A., Minassian, V.D. and Marsh, J.W. (2013) HIV-1 Nef Mediates Pak Phosphorylation of Mek1 serine298 and Elicits an Active Phospho-State of Pak2. Current HIV Research, 11, 198-209. https://doi.org/10.2174/1570162X113119990039
[64]  Nguyen, D.G., Wolff, K.C., Yin, H., Caldwell, J.S. and Kuhen, K.L. (2006) “UnPAKing” Human Immunodeficiency Virus (HIV) Replication: Using Small Interfering RNA Screening to Identify Novel Cofactors and Elucidate the Role of Group I PAKs in HIV Infection. Journal of Virology, 80, 130-137. https://doi.org/10.1128/JVI.80.1.130-137.2006
[65]  Popik, W. and Pitha, P.M. (1996) Binding of Human Immunodeficiency Virus Type 1 to CD4 Induces Association of Lck and Raf-1 and Activates Raf-1 by a Ras-Independent Pathway. Molecular and Cellular Biology, 16, 6532-6541. https://doi.org/10.1128/MCB.16.11.6532
[66]  Berridge, M.J. (2014) Module 2: Cell Signalling Pathways. Cell Signalling Biology, 6, csb0001002. https://doi.org/10.1042/csb0001002
[67]  Finco, T.S. and Baldwin, A.S. (1993) Kappa B Site-Dependent Induction of Gene Expression by Diverse Inducers of Nuclear Factor Kappa B Requires Raf-1. The Journal of Biological Chemistry, 268, 17676-17679.
[68]  Gringhuis, S.I., van der Vlist, M., van den Berg, L.M., den Dunnen, J., Litjens, M. and Geijtenbeek, T.B. (2010) HIV-1 Exploits Innate Signaling by TLR8 and DC-SIGN for Productive Infection of Dendritic Cells. Nature Immunology, 11, 419-426. https://doi.org/10.1038/ni.1858
[69]  Deindl, S., Kadlecek, T.A., Brdicka, T., Cao, X., Weiss, A. and Kuriyan, J. (2007) Structural Basis for the Inhibition of Tyrosine Kinase Activity of ZAP-70. Cell, 129, 735-746.
https://doi.org/10.1016/j.cell.2007.03.039
[70]  Wang, H., Kadlecek, T.A., Au-Yeung, B.B., Goodfellow, H.E., Hsu, L.Y., Freedman, T.S. and Weiss, A. (2010) ZAP-70: An Essential Kinase in T-Cell Signaling. Cold Spring Harbor Perspectives in Biology, 2, a002279. https://doi.org/10.1101/cshperspect.a002279
[71]  Arpaia, E., Shahar, M., Dadi, H., Cohen, A. and Roifman, C.M. (1994) Defective T Cell Receptor Signaling and CD8+ Thymic Selection in Humans Lacking Zap-70 Kinase. Cell, 76, 947-958. https://doi.org/10.1016/0092-8674(94)90368-9
[72]  Elder, M.E., Lin, D., Clever, J., Chan, A.C., Hope, T.J., Weiss, A. and Parslow, T.G. (1994) Human Severe Combined Immunodeficiency Due to a Defect in ZAP-70, a T Cell Tyrosine Kinase. Science, 264, 1596-1599. https://doi.org/10.1126/science.8202712
[73]  Meinl, E., Lengenfelder, D., Blank, N., Pirzer, R., Barata, L. and Hivroz, C. (2000) Differential Requirement of ZAP-70 for CD2-Mediated Activation Pathways of Mature Human T Cells. The Journal of Immunology, 165, 3578-3583. https://doi.org/10.4049/jimmunol.165.7.3578
[74]  Tardif, M.R. and Tremblay, M.J. (2005) Regulation of LFA-1 Activity through Cytoskeleton Remodeling and Signaling Components Modulates the Efficiency of HIV Type-1 Entry in Activated CD4+ T Lymphocytes. The Journal of Immunology, 175, 926-935.
https://doi.org/10.4049/jimmunol.175.2.926
[75]  Sol-Foulon, N., Sourisseau, M., Porrot, F., Thoulouze, M.I., Trouillet, C., Nobile, C., Blanchet, F., di Bartolo, V., Noraz, N., Taylor, N., Alcover, A., Hivroz, C. and Schwartz, O. (2007) ZAP-70 Kinase Regulates HIV Cell-to-Cell Spread and Virological Synapse Formation. The EMBO Journal, 26, 516-526. https://doi.org/10.1038/sj.emboj.7601509

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133