全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Storm Tracks Response to Changes in Atmospheric Greenhouse Gas Concentration at the South of Brazil and Southwest Atlantic Ocean

DOI: 10.4236/acs.2019.94035, PP. 545-557

Keywords: Storm Tracks, Confluence Brazil-Malvinas, Atlantic Ocean

Full-Text   Cite this paper   Add to My Lib

Abstract:

Here we investigate the ocean-atmosphere coupling and the contribution of the Sea Surface Temperature (SST) variations in: 1) Brazil-Malvinas Confluence (BMC) region, 2) Southwest Atlantic Ocean and 3) Southern Brazil. Numerical simulations of the ECHAM5/MPI-OM coupled ocean-atmosphere model were used to analyze the changes in the seasonal trajectory of the extratropical cyclones, in terms of intensification of physical mechanisms and implications for future scenarios. The numerical experiment for the future scenario considered an atmospheric CO2 concentration of approximately 770 ppm, which represents an increment of more than 350 ppm over the current values recorded by the Mauna Loa reference station. For this scenario, the results indicated a Storm Tracks (ST) displacement of 5° latitude toward south and changes of the meridional transport of sensible heat, close to 50°S. The increase in SST induces ST intensification and consequently an increase in the occurrence of extratropical cyclones. Overall, in the BMC region, we found a change in the pattern of cyclogenetic activity occurrence, with less frequent, but more intense events. On the Southern Brazilian region, the results of this study indicate increases in rainfall during summer months, whereas, a decrease in frequency and an increase in intensity were found for wintertime. We suggest that these changes could impact the climate dynamic of the Brazilian South coast, with a magnitude yet unknown.

References

[1]  Bengtsson, L., Hodges, K.I. and Roeckner, E. (2006) Storm Tracks and Climate Change. Journal of Climate, 19, 3518-3543.
https://doi.org/10.1175/JCLI3815.1
[2]  Rocha, R.P., Sugahara, S. and Silveira, R.B. (2004) Sea Waves Generated by Extratropical Cyclones in the South Atlantic Ocean: Hind-Cast and Validation against Altimeter Data. Weather and Forecasting, 19, 398-410.
https://doi.org/10.1175/1520-0434(2004)019<0398:SWGBEC>2.0.CO;2
[3]  Hoskins, B.J. and Hodges, K.I. (2005) A New Perspective on Southern Hemisphere Storm Tracks. Journal of Climate, 18, 4108-4129.
https://doi.org/10.1175/JCLI3570.1
[4]  Trenberth, K.E. (1991) Storm Tracks in the Southern Hemisphere. Journal of the Atmospheric Sciences, 48, 2159-2178.
https://doi.org/10.1175/1520-0469(1991)048<2159:STITSH>2.0.CO;2
[5]  Lau, N.-C. (1988) Variability of the Observed Midlatitude Storm Tracks in Relation to Low-Frequency Changes in the Circulation Pattern. Journal of the Atmospheric Sciences, 45, 2718-2743.
https://doi.org/10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2
[6]  Ting, M. and Held, I.M. (1990) The Stationary Wave Response to a Tropical SST Anomaly in an Idealized GCM. Journal of the Atmospheric Sciences, 47, 2546-2566.
https://doi.org/10.1175/1520-0469(1990)047<2546:TSWRTA>2.0.CO;2
[7]  Gan, M.A. and Rao, B.V. (1991) Surface Cyclogenesis over South America. Monthly Weather Review, 119, 1293-1302.
https://doi.org/10.1175/1520-0493(1991)119<1293:SCOSA>2.0.CO;2
[8]  Diaz, A.F., Studzinski, C.A. and Mechoso, C.R. (1998) Relationships between Precipitation Anomalies in Uruguay and Southern Brazil and Sea Surface Temperature in the Pacific and Atlantic Oceans. Journal of Climate, 11, 251-271.
https://doi.org/10.1175/1520-0442(1998)011<0251:RBPAIU>2.0.CO;2
[9]  Pezzi, L.P. and Souza, R.B. (2009) O uso da temperatura da superfície do mar emestudosclimáticos. In: Souza, R.B., Ed., Oceanografia por satélites, Oficina de Textos, São Paulo, 117-133.
[10]  Seluchi, M. and Saulo, A.C. (1998) Possible Mechanisms Yielding an Explosive Coastal Cyclogenesis over South America: Experiments Using a Limited Area Model. Australian Meteorological Magazine, 47, 309-320.
[11]  Pezza, A.B. and Simmonds, I. (2005) The First South Atlantic Hurricane: Unprecedented Blocking, Low Shear and Climate Change. Geophysical Research Letters, 32, L15712.
https://doi.org/10.1029/2005GL023390
[12]  Pezzi, L.P., Souza, R.B., Acevedo, O., Wainer, I., Mata, M.M., Garci, C.A.E. and De Camargo, R. (2009) Multiyear Measurements of the Oceanic and Atmospheric Boundary Layers at the Brazil-Malvinas Confluence Region. Journal of Geophysical Research, 114, D19103.
https://doi.org/10.1029/2008JD011379
[13]  Pezzi, L.P., Souza, R.B. and Quadro, M.F.L. (2016) Uma Revisão dos Processos de Interação Oceano-Atmosfera em Regiões de Intenso Gradiente Termal do Oceano Atlântico Sul Baseadaem Dados Observacionais. Revista Brasileira de Meteorologia, 31, 428-453.
https://doi.org/10.1590/0102-778631231420150032
[14]  Silva, W.L., Nascimento, M.X. and Menezes, W.F. (2015) Atmospheric Blocking in the South Atlantic during the Summer 2014: A Synoptic Analysis of the Phenomenon. Atmospheric and Climate Sciences, 5, 386-393.
https://doi.org/10.4236/acs.2015.54030
[15]  Silveira, I.C.A., Calado, L., Castro, B.M., Cirano, M., Lima, J.A.M. and Mascarenhas, A.D.S. (2004) On the Baroclinic Structure of the Brazil Current Intermediate Western Boundary Current System at 22°-23°S. Geophysical Research Letters, 31, L14308.
https://doi.org/10.1029/2004GL020036
[16]  Cataldi, M., Assad, L.P.F., Torres Jr., A.R. and Alves, J.L.D. (2010) Estudo da influência das anomalias da TSM do Atlantico Sul extratropical naregião da Confluência Brasil Malvinas no regime hidrometeorológico de verão do Sul e Sudeste do Brasil. Revista Brasileira de Meteorologia, 25, 513-524.
https://doi.org/10.1590/S0102-77862010000400010
[17]  Souza, R.B. and Robson, I.S. (2004) Lagrangian and Satellite Observations of the Brazilian Coastal Current. Continental Shelf Research, 24, 241-262.
[18]  Chiessi, C.M., Mulitza, S., Groeneveld, J., Silva, J., Campos, M.C. and Gurgel, M.H.C. (2014) Variability of the Brazil Current during the Late Holocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 28-36.
https://doi.org/10.1016/j.palaeo.2013.12.005
[19]  Sterl, A., et al. (2008) When Can We Expect Extremely High Surface Temperatures? Geophysical Research Letters, 35, L14703.
https://doi.org/10.1029/2008GL034071
[20]  Jungclaus, J.H., Keenlyside, N., Botzet, M., Haak, H., Luo, J.-J., Latif, M., Marotzke, J., Mikolajewicz, U. and Roeckner, E. (2006) Ocean Circulation and Tropical Variability in the Coupled Model ECHAM5/MPI-OM. Journal of Climate, 19, 3952-3972.
https://doi.org/10.1175/JCLI3827.1
[21]  Uppala, S.M., et al. (2006) The ERA-40 Re-Analysis. Quarterly Journal of the Royal Meteorological Society, 131, 2961-3012.
[22]  Reboita, M.S., Gan, M.A., Rocha, R.P. and Custódio, I.S. (2017) Ciclones em Superfícienas Latitudes Austrais: Parte I-Revisão Bibliográfica. Revista Brasileira de Meteorologia, 32, 171-186.
https://doi.org/10.1590/0102-77863220010
[23]  Freitas, R.A., Lindemann, D., Justino, F. and Machado, J. (2018) Influência do Aquecimento Global nas Trajetórias e Intensidades dos Ciclones Extratropicais no Hemisfério Sul. Anuário do Instituto de Geociências, 41, 297-304.
https://doi.org/10.11137/2018_2_297_304
[24]  Sato, O.T. (2009) Fluxo de calor oceanico medido por satélites. In: Souza, R.B., Ed., Oceanografia por Satélites, Oficina de Textos, São Paulo, 165-184.
[25]  Yin, J.H. (2005) A Consistent Poleward Shift of the Storm Tracks in Simulations of 21st Century Climate. Geophysical Research Letters, 32, L18701.
https://doi.org/10.1029/2005GL023684
[26]  Peterson, R.G. and Stramma, L. (1991) Upper-Level Circulation in the South Atlantic Ocean. Progress in Oceanography, 26, 1-73.
https://doi.org/10.1016/0079-6611(91)90006-8
[27]  Acevedo, O.C., Pezzi, L.P., Souza, R.B., Anabor, V. and Degrazia, G.A. (2010) Atmospheric Boundary Layer Adjustment to the Synoptic Cycle at the Brazil-Malvinas Confluence, South Atlantic Ocean. Journal of Geophysical Research, 115, D22107.
https://doi.org/10.1029/2009JD013785
[28]  Sinclair, M.R. (1995) A Climatology of Cyclogenesis for the Southern Hemisphere. Monthly Weather Review, 123, 1601-1619.
https://doi.org/10.1175/1520-0493(1995)123<1601:ACOCFT>2.0.CO;2
[29]  Simmonds, I. and Keay, K. 2000. Mean Southern Hemisphere Extratropical Cyclone Behavior in the 40-Year NCEP-NCAR Reanalysis. Journal of Climate, 13, 873-885.
https://doi.org/10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2
[30]  Vera, C., Silvestri G., Liebman, B. and González, P. (2006) Climate Change Scenarios for Seasonal Precipitation in South America from IPCC AR4 Models. Geophysical Research Letters, 33, L13707.
https://doi.org/10.1029/2006GL025759
[31]  Justino, F. and Peltier, R. (2006) Influence of Present Day and Glacial Surface Conditions on the Antarctic Oscillation/Southern Annular Mode. Geophysical Research Letters, 33, L22702.
https://doi.org/10.1029/2006GL027001
[32]  Comiso, J.C. and Gordon, A.L. (1998) Interannual Variability in Summer Sea Ice Minimum, Coastal Polynyas, and Bottom Water Formation in the Weddell Sea. In: Jeffries, M., Ed., Antarctic Sea Ice: Physical Processes, Interactions, and Variability. Antarctic Research Series, Volume 74, American Geophysical Union, Washington DC, 293-315.
https://doi.org/10.1029/AR074p0293
[33]  Parkinson, C.L. and Cavalieri, D.J. (2012) Antarctic Sea Ice Variability and Trends, 1979-2010. The Cryosphere, 6, 871-880.
https://doi.org/10.5194/tc-6-871-2012
[34]  Pezza, A.B. and Ambrizzi, T. (2003) Variability of Southern Hemisphere Cyclone and Anticyclone Behavior: Further Analysis. Journal of Climate, 16, 1075-1083.
https://doi.org/10.1175/1520-0442(2003)016<1075:VOSHCA>2.0.CO;2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133