|
马钢A#4000 m3高炉护炉生产实践
|
Abstract:
本文着重介绍了马钢A#4000 m3高炉在炉役后期碳砖温度快速上升后,通过使用含钛物料、增强局部冷却强度、停用碳砖温度高铁口,采用合理的冶炼强度、适宜的炉缸热制度、送风参数、装料制度等,炉缸敏感碳砖温度点均呈现下降趋势,其中最高点由684℃持续下降至100℃左右,实现了高炉炉役后期生产的安全和高炉的稳定顺行。
This article focuses on the operational practices of A# (4000 m3) blast furnace of Masteel in its late furnace campaign after the hearth carbon brick temperature rising suddenly to a high level. The average carbon brick temperature exhibited a tendency of declining and also the highest temper-ature declined from 684?C to 100?C or so, by employing such methods as using ore with certain amount of titanium element, enhancing cooling intensity, stopping the usage of the tapping hole in the direction of carbon brick with high level temperature, reasonably reducing smelting intensity, maintaining suitable heat balance in hearth, controlling blast parameters, adjusting matrix of bell-less top charging system etc. As a result, the 4000 m3 (A#) blast furnace achieved a safe and stable operational performance in its late stage of a campaign.
[1] | 雷有高, 魏功亮, 赵仕清, 等. 重钢5号炉钒钛护炉实践[J]. 炼铁, 2007(1): 20-22. |
[2] | 由文泉, 赵民革.实用高炉炼铁技术[M]. 北京: 冶金工业出版社, 2003. |
[3] | 朱良仁, 等. 宝钢大型高炉操作与管理[M]. 北京: 冶金工业出版社, 2015. |
[4] | 王筱留, 焦克新, 祁成林, 等. 高炉炉缸炭砖保护层的形成机理及影响因素[J]. 炼铁, 2017, 36(5): 8-13. |
[5] | 黄智华, 余映红, 肖益. 九钢4号高炉经济护炉生产实践[J]. 江西冶金, 2016, 36(6): 14-18. |