In this work, we conducted a QSAR study on 18 molecules using descriptors from the Density Functional Theory (DFT) in order to predict the inhibitory activity of hydroxamic acids on histone deacetylase 7. This study is performed using the principal component analysis (PCA) method, the Ascendant Hierarchical Classification (AHC), the linear multiple regression method (LMR) and the nonlinear multiple regression (NLMR). DFT calculations were performed to obtain information on the structure and information on the properties on a series of hydroxamic acids compounds studied. Multivariate statistical analysis yielded two quantitative models (model MLR and model MNLR) with the quantum descriptors: electronic affinity (AE), vibration frequency of the OH bond (ν(OH)) and that of the NH bond (ν(NH)). The LMR model gives statistically significant results and shows a good predictability R2 = 0.9659, S = 0.488, F = 85 and p-value < 0.0001. Electronic affinity is the priority descriptor in predicting the activity of HDAC7 inhibitors in this study. The results obtained suggest that the descriptors derived from the DFT could be useful to predict the activity of histone deacetylase 7 inhibitors. These models were evaluated according to the criteria of Tropsha et al.
References
[1]
Yoon, S. and Eom, G.H. (2016) HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam Medical Journal, 52, 1-12.
https://doi.org/10.4068/cmj.2016.52.1.1
[2]
Witt, O., Deubzer, H.E., Milde, T. and Oehme, I. (2009) HDAC Family: What Are the Cancer Relevant Targets? Cancer Letters, 277, 8-21.
https://doi.org/10.1016/j.canlet.2008.08.016
[3]
Micelli, C. and Rastelli, G. (2015) Histone Deacetylases: Structural Determinants of Inhibitor Selectivity. Drug Discovery Today, 20, 718-735.
https://doi.org/10.1016/j.drudis.2015.01.007
[4]
Haberland, M., Montgomery, R.L. and Olson, E.N. (2009) The Many Roles of Histone Deacetylases in Development and Physiology: Implications for Disease and Therapy. Nature Reviews Genetics, 10, 32-42. https://doi.org/10.1038/nrg2485
[5]
Zhang, C.L., McKinsey, T.A., Chang, S., Antos, C.L., Hill, J.A. and Olson, E.N. (2002) Class II Histone Deacetylases Act as Signal-Responsive Repressors of Cardiac Hypertrophy. Cell, 110, 479-488. https://doi.org/10.1016/S0092-8674(02)00861-9
[6]
Vega, R.B., et al. (2004) Histone Deacetylase 4 Controls Chondrocyte Hypertrophy during Skeletogenesis. Cell, 119, 555-566. https://doi.org/10.1016/j.cell.2004.10.024
[7]
Chang, S., Young, B.D., Li, S., Qi, X., Richardson, J.A. and Olson, E.N. (2006) Histone Deacetylase 7 Maintains Vascular Integrity by Repressing Matrix Metalloproteinase 10. Cell, 126, 321-334. https://doi.org/10.1016/j.cell.2006.05.040
[8]
Jones, P., et al. (2008) Probing the Elusive Catalytic Activity of Vertebrate Class IIa Histone Deacetylases. Bioorganic & Medicinal Chemistry Letters, 18, 1814-1819.
https://doi.org/10.1016/j.bmcl.2008.02.025
[9]
Ouaïssi, M., et al. (2008) High Histone Deacetylase 7 (HDAC7) Expression Is Significantly Associated with Adenocarcinomas of the Pancreas. Annals of Surgical Oncology, 15, 2318-2328. https://doi.org/10.1245/s10434-008-9940-z
[10]
Witt, A.E., et al. (2017) Identification of a Cancer Stem Cell-Specific Function for the Histone Deacetylases, HDAC1 and HDAC7, in Breast and Ovarian Cancer. Oncogene, 36, 1707-1720. https://doi.org/10.1038/onc.2016.337
[11]
Parra, M. (2015) Class IIa HDACs—New Insights into Their Functions in Physiology and Pathology. The FEBS Journal, 282, 1736-1744.
https://doi.org/10.1111/febs.13061
[12]
Ouaïssi, M., Giger, U., Sielezneff, I., Pirrò, N., Sastre, B. and Ouaissi, A. (2011) Rationale for Possible Targeting of Histone Deacetylase Signaling in Cancer Diseases with a Special Reference to Pancreatic Cancer. Journal of Biomedicine and Biotechnology, 2011, Article ID 315939. https://doi.org/10.1155/2011/315939
[13]
Barneda-Zahonero, B., et al., (2015) The Transcriptional Repressor HDAC7 Promotes Apoptosis and c-Myc Downregulation in Particular Types of Leukemia and Lymphoma. Cell Death & Disease, 6, 16-35.
https://doi.org/10.1038/cddis.2014.594
[14]
Lei, Y., et al. (2017) Hdac7 Promotes Lung Tumorigenesis by Inhibiting Stat3 Activation. Molecular Cancer, 16, 170. https://doi.org/10.1186/s12943-017-0736-2
[15]
Yao, Y., Liao, C.Z., Li, Z., Wang, Z., et al. (2014) Design, Synthesis, and Biological Evaluation of 1,3-Disubstituted-Pyrazole Derivatives as New Class I and IIb Histone Deacetylase Inhibitors. European Journal of Medicinal Chemistry, 86, 639-652.
https://doi.org/10.1016/j.ejmech.2014.09.024
[16]
Kapp, J., Remko, M. and Schleyer, P.V.R. (1996) H2XO and (CH3)2XO Compounds (X = C, Si, Ge, Sn, Pb): Double Bonds vs Carbene-Like Structures Can the Metal Compounds Exist at All? Journal of the American Chemical Society, 118, 5745-5751.
https://doi.org/10.1021/ja953846p
[17]
Johnson, B.G., Gill, P.M. and Pople, J.A. (1993) The Performance of a Family of Density Functional Methods. The Journal of Chemical Physics, 98, 5612-5626.
https://doi.org/10.1063/1.464906
[18]
Frisch, M., Trucks, G., Schlegel, H. and Scuseria, G. (2009) Gaussian 09, Revision C.01. Gaussian Inc., Wallingford.
[19]
Microsoft Excel (2013) (15.0.4420.1017) MSO (15.0.4420.1017) 64 Bits Partie de Microsoft Office Professionnel Plus.
[20]
XLSTAT (2014) Version 2014.5.03 Copyright Addinsoft 1995-2014 XLSTAT and Addinsoft Are Registered Trademarks of Addinsoft. https://www.xlstat.com
[21]
Koopmans, T. (1934) úber die Zuordnung von Wellenfunktiomen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1, 104-113.
https://doi.org/10.1016/S0031-8914(34)90011-2
[22]
Balaban, A.T. (1997) From Chemical Topology to Three-Dimensional Geometry. Plenum Press, New York, 1-24.
[23]
Randic, M. and Razinger, M. (1995) Molecular Topographic Indices. The Journal for Chemical Information and Computer Scientists, 35, 140-147.
https://doi.org/10.1021/ci00023a021
[24]
Rastija, V. and Medic-Š., M. (2009) QSAR Modeling of Anthocyanins, Anthocyanidins and Catechins as Inhibitors of Lipid Peroxidation Using Three-Dimensional Descriptors. Medicinal Chemistry Research, 18, 579-588.
https://doi.org/10.1007/s00044-008-9151-y
[25]
Larif, M., Adad, A., Hmamouchi, R., Taghki, A.I., Soulaymani, A., Elmidaoui, A., Bouachrine, M. and Lakhlifi, T. (2013) Biological Activities of Triazine Derivatives. Combining DFT and QSAR Results. Arabian Journal of Chemistry.
[26]
Traoré, Y., Koné, M.G.-R., Ouattara, O. and Ziao, N. (2018) Qsar Approach to Estimating the Analgesic Activity of a Serie of Tri-Substituted Pyrimidine Derivatives. Journal of Computational Chemistry & Molecular Modelling, 2, 1-14.
[27]
Kpidi, Y.H., Yapo, O.B., Koné, M.G.-R., Gadji, G.A., Gnagne, A.E.J.E.Y., N’dri, J. and Ziao, S.N. (2018) Monitoring and Modeling of Chlorophyll-a Dynamics in a Eutrophic Lake: M’koa Lake (Jacqueville, Ivory Coast). American Journal of Environmental Protection, 6, 1-9. https://doi.org/10.12691/env-6-1-1
[28]
Hmamouchi, R., Taghki, A.I., Larif, M., Adad, A., Abdellaoui, A., Bouachrine, M. and Lakhlifi, T. (2013) The Inhibitory Activity of Aldose Reductase of Flavonoid Compounds: Combining DFT and QSAR Calculations. Journal of Chemical and Pharmaceutical Research, 5, 198-209.
[29]
Escofier, B. and Pagès, J. (2008) Analyses factorielles simples et multiples: Objectifs, méthodes et interprétation. Dunod, Paris.
[30]
Rücker, C., Rücker, G. and Meringer, M. (2007) y-Randomization and Its Variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47, 2345-2357.
https://doi.org/10.1021/ci700157b
[31]
N’guessan, K.N., Koné, M.G.-R., Bamba, K., Ouattara, W.P. and Ziao, N. (2017) Quantitative Structure Anti-Cancer Activity Relationship (QSAR) of a Series of Ruthenium Complex Azopyridine by the Density Functional Theory (DFT) Method. Computational Molecular Bioscience, 7, 19-31.
https://doi.org/10.4236/cmb.2017.72002
[32]
Snedecor, G.W. and Cochran, W.G. (1967) Methods, Statistical. Oxford and IBH, New Delhi, 381.
[33]
Kangah, N.J.-B., Koné, M.G.-R., Kodjo, C.G., N’guessan, B.R., Kablan, A.L.C., Yéo, S.A. and Ziao, N. (2017) Antibacterial Activity of Schiff Bases Derived from Ortho Diaminocyclohexane, Meta-Phenylenediamine and 1,6-Diaminohexane: Qsar Study with Quantum Descriptors. International Journal of Pharmaceutical Science Invention, 6, 38-43.
[34]
Esposito, E.X., Hopfinger, A.J. and Madura, J.D. (2004) Methods for Applying the Quantitative Structure-Activity Relationship Paradigm. Methods in Molecular Biology, 275, 131-213. https://doi.org/10.1385/1-59259-802-1:131
[35]
Eriksson, L., Jaworska, J., Worth, A., Cronin, M.D., Dowell, R.M.M. and Gramatica, P. (2003) Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs. Environmental Health Perspectives, 111, 1361-1375. https://doi.org/10.1289/ehp.5758
[36]
N’Dri, J.S., Koné, M.G.-R., Kodjo, C.G., Affi, S.T., Kablan, A.L.C., Ouattara, O., Soro, D. and Ziao, N. (2017) Relation Quantitative Structure Activité (QSAR) d’une série d’azetidinones dérivés de Dapsone par la méthode de Théorie de la fonctionnelle de la densité(DFT). International Journal of Applied Sciences, 8, 55-62.
https://doi.org/10.21013/jas.v8.n2.p2
[37]
Golbraikh, A. and Tropsha, A. (2002) Beware of QSAR. Journal of Molecular Graphics and Modelling, 20, 269-276.
https://doi.org/10.1016/S1093-3263(01)00123-1
[38]
Ouattara, O., Koné, M.G-R., Affi, T.S., Bamba, K., Traore, Y. and Ziao, N. (2018) Contribution to the Molecular Lipophilicity Scale by Qspr Models of Lipophilicity Prediction. Journal of Engineering Research and Application, 8, 55-61.
[39]
Ouattara, O., Affi, T.S., Koné, M.G.-R., Bamba, K. and Ziao, N. (2017) Can Empirical Descriptors Reliably Predict Molecular Lipophilicity? A QSPR Study Investigation. International Journal of Engineering Research and Applications, 7, 50-56. https://doi.org/10.9790/9622-0705015056
[40]
Sahigara, F., et al. (2012) Comparison of Different Approaches to Define the Applicability Domain of QSAR Models. Molecules, 17, 4791-4810.
https://doi.org/10.3390/molecules17054791
[41]
Tropsha, A., Gramatica, P. and Gombar, V.K. (2003) The Importance of Being Earnest, Validation Is the Absolute Essential for Successful Application and Interpretation of QSPR Models. QSAR & Combinatorial Science, 22, 69-77.
https://doi.org/10.1002/qsar.200390007
[42]
Netzeva, T.I., et al. (2005) Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships. The Report and Recommendations of ECVAM Workshop 52. Alternatives to Laboratory Animals, 33, 155-173. https://doi.org/10.1177/026119290503300209
[43]
Dearden, J.C. (2016) The History and Development of Quantitative Structure-Activity Relationships (QSARs). International Journal of Quantitative Structure-Property Relations, 1, 44. https://doi.org/10.4018/IJQSPR.2016010101