This paper aims to present, in a unified manner, the algebraic techniques of eigen-problem which are valid on both the quaternions and split quaternions. This paper studies eigenvalues and eigenvectors of the v-quaternion matrices by means of the complex representation of the v-quaternion matrices, and derives an algebraic technique to find the eigenvalues and eigenvectors of v-quaternion matrices. This paper also gives a unification of algebraic techniques for eigenvalues and eigenvectors in quaternionic and split quaternionic mechanics.
References
[1]
Hamilton, W.R. (1843) On a New Species of Imaginary Quantities Connected with a Theory of Quaternions. Proceedings of the Royal Irish Academy, 2, 424-434.
[2]
Cockle, J. (1849) On Systems of Algebra Involving More than One Imaginary; and on Equations of the Fifth Degree. Philosophical Magazine, 35, 434-437.
[3]
Adler, S.L. (1995) Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York.
[4]
Pereira, R., Rocha, P. and Vettori, P. (2005) Algebraic Tools for the Study of Quaternionic Behavioral Systems. Linear Algebra and Its Applications, 400, 121-140.https://doi.org/10.1016/j.laa.2005.01.008
[5]
Rodman, L. (2014) Topics in Quaternion Linear Algebra. Princeton University Press, Princeton, NJ. https://doi.org/10.23943/princeton/9780691161853.001.0001
[6]
Brody, D.C. and Graefe, E.M. (2011) On Complexified Mechanics and Coquaternions. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 072001.https://doi.org/10.1088/1751-8113/44/7/072001
[7]
Kula, L. and Yayli, Y. (2007) Split Quaternions and Rotations in Semi Euclidean Space. Journal of the Korean Mathematical Society, 44, 1313-1327.https://doi.org/10.4134/JKMS.2007.44.6.1313
[8]
Özdemir, M. and Ergin, A.A. (2005) Some Geometric Applications of Timelike Quaternions. International Conference of The Jangjeon Mathematical Society, 6, 108-115.
[9]
Özdemir, M. and Ergin, A.A. (2006) Rotations with Unit Timelike Quaternions in Minkowski 3-Space. Journal of Geometry and Physic, 56, 322-336.https://doi.org/10.1016/j.geomphys.2005.02.004
[10]
Jiang, T. (2004) An Algorithm for Eigenvalues and Eigenvectors of Quaternion Matrices in Quaternionic Quantum Mechanics. Journal of Mathematical Physics, 45, 3334-3338. https://doi.org/10.1063/1.1769106
[11]
Baker, A. (1999) Right Eigenvalues for Quaternionic Matrices: A Topological Approach. Linear Algebra and its Applications, 286, 303-309. https://doi.org/10.1016/S0024-3795(98)10181-7
[12]
Jiang, T., Zhang, Z. and Jiang, Z. (2018) Algebraic Techniques for Eigenvalues and Eigenvectors of a Split Quaternion Matrix in Split Quaternionic Mechanics. Computer Physics Communications, 229, 1-7. https://doi.org/10.1016/j.cpc.2018.03.021
[13]
Erdoğdu, M. and Özdemir, M. (2013) On Eigenvalues of Split Quaternion Matrices. Advances in Applied Clifford Algebras, 23, 615-623. https://doi.org/10.1007/s00006-013-0391-7
[14]
Brody, D.C. and Graefe, E.M. (2011) Coquaternionic Quantum Dynamics for Two-Level Systems. Acta Polytechnica Hungarica, 51, 14-20.
[15]
Bender, C.M. (2007) Making Sense of Non-Hermitian Hamiltonians. Reports on Progress in Physics, 70, 947-1018. https://doi.org/10.1088/0034-4885/70/6/R03
[16]
Lancaster, P. and Tismenersky, M. (1985) The Theory of Matrices with Applications. Academic Press, New York.