The article contains the results of statistical processing of a large summary of δ18О-δ13С isotope values in the primary carbonatites of the world. From literary sources, 1593 paired values δ18О-δ13С from 173 carbonatite occurrences of the world were collected. This report exceeds all previously published reports on С-О isotopes in carbonatites by quantity of the used values and carbonatite occurrences. Statistical data analysis is performed on diagrams in the coordinates δ18О (‰, V-SMOW) - δ13С (‰, V-PDV). For each carbonatite occurrence, not only the arithmetic mean values are calculated, but also the regression line. Distinct linear trend of δ18О-δ13С values is found in half of the carbonatite occurrences. The starting, middle, and ending points of the trend line are determined. The slope of the trend line (angular coefficient) varies over a wide range. The trend is dominated by an average angular coefficient of 0.30 (positive correlation δ18О-δ13С). In the literature, it is associated with the Rayleigh high-temperature fractionation of carbonatite melts or with their sedimentary contamination. Half of the carbonatite occurrences do not show a linear trend of δ18О-δ13С values, probably due to the combined action of multidirectional trends. The initial ratio 87Sr/86Sr in the used carbonatite occurrences varies from 0.701 to 0.708. Statistics show no correlation of 87Sr/86Sr with the δ18О-δ13С system.
References
[1]
Deines, P. (1989) Stable Isotope Variations in Carbonatites. Carbonatites: Genesis and Evolution. Unwin Hyman, London, 301-359.
[2]
Demény, A., Sitnikova, M.A. and Karchevsky, P.I. (2004) Stable C and O Isotope Compositions of Carbonatite Complexes of the Kola Alkaline Province: Phoscorite-Carbonatite Relationships and Source Compositions. In: Wall, F. and Zaitsev, A.N., Eds., Phoscorites and Carbonatites from Mantle to Mine, Mineralogical Society Series 10, Mineralogical Society, London, 407-431.
https://doi.org/10.1180/MSS.10.12
[3]
Vladykin, N.V., Morikiyo, T., Miyazaki, T. and Tsypukova, S.S. (2004) Geochemistry of Carbon and Oxygen Isotopes of Siberian Carbonatites and Geodynamics. Deep Magmatism, Its Sources and Their Connection with Plume Processes, Irkutsk. 89-107. (In Russian)
[4]
Bell, K. and Simonetti, A. (2010) Source of Parental Melts to Carbonatites-Critical Isotopic Constraints. Mineralogy and Petrology, 98, 77-89.
https://doi.org/10.1007/s00710-009-0059-0
[5]
Taylor, H.P., Frechen, J. and Degens, E.T. (1967) Oxygen and Carbon Isotope Studies of Carbonatites from the Laacher See District, West Germany and the Alno District, Sweden. Geochimica et Cosmochimica Acta, 31, 407-430.
https://doi.org/10.1016/0016-7037(67)90051-8
[6]
Keller, I. and Hoefs, I. (1995) Stable Isotope Characteristics of Recent Natrocarbonatite from Oldoinyo Lengai. In: Bell, K. and Keller, J., Eds., Carbonatite Volcanism: Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites, Proceedings in Volcanology, Vol. 4, Springer, Berlin, 113-123.
https://doi.org/10.1007/978-3-642-79182-6_9
[7]
Jones, A.P., Genge, M. and Carmody, L. (2013) Carbonate Melts and Carbonatites. Reviews in Mineralogy & Geochemistry, 75, 289-322.
https://doi.org/10.2138/rmg.2013.75.10
[8]
Woolley, A.R. and Kjarsgaard, B.A. (2008) Carbonatite Occurrences of the World: Map and Database. Geological Survey of Canada, Ottawa.
https://doi.org/10.4095/225115