Difference in Nitrogen Starvation-Inducible Expression Patterns among Phylogenetically Diverse Ammonium Transporter Genes in the Red Seaweed Pyropia yezoensis
Nitrogen deficiency induces senescence and the
expression of genes encoding ammonium transporters (AMTs) in terrestrial plants
where the AMT family is subdivided into AMT1 and AMT2 subfamilies. Nitrogen
starvation in the red seaweed Pyropiayezoensis causes senescence-like discoloration.In this study, we identifiedfivegenes in P. yezoensisencoding AMT domain-containing
proteins,which
were phylogenetically categorized into the AMT1 subfamily. We also found a gene
encoding a Rhesus protein (Rh) that was related to,but diverged from, AMTs.Moreover, our phylogenetic
analysis showed that AMT domain-containing proteins from micro- and macro-algae
belonged to either the AMT1 or Rh subfamily, indicating the absence of AMT2 in
algae. Gene expression analyses
revealed the presence of gametophyte- and sporophyte-specificAMT1 genesthat were
up-regulated transiently and continually,
respectively, under nitrogen-deficient conditions. In addition, up-regulated
sporophyte-specific gene expression was suppressed when nitrogen was resupplied.
Accordingly, an expansion of the ancient AMT gene has producedAMT1 functional variants
References
[1]
Nicolaus, W., Sonia, G., Alain, G. and Frommer, W.B. (2000) The Molecular Physiology of Ammonium Uptake and Retrieval. Current Opinion in Plant Biology, 3, 254-261.
[2]
Couturier, J., Montanini, B., Martin, F., Brun, A., Blaudez, D. and Chalot, M. (2007) The Expanded Family of Ammonium Transporters in the Perennial Poplar Plant. New Phytologist, 174, 137-150. https://doi.org/10.1111/j.1469-8137.2007.01992.x
[3]
González-Ballester, D., Camargo, A. and Fernández, E. (2005) Ammonium Transporter Genes in Chlamydomonas: The Nitrate-Specific Regulatory Gene Nit2 Is Involved in Amt1; 1 Expression. Plant Molecular Biology, 56, 863-878.
https://doi.org/10.1007/s11103-004-5292-7
[4]
Gazzarrini, S., Lejay, L., Gojon, A., Ninnemann, O., Frommer, W.B. and Wiréna, N. (1999) Three Functional Transporters for Constitutive, Diurnally Regulated, and Starvation-Induced Uptake of Ammonium into Arabidopsis Roots. The Plant Cell, 11, 937-947. https://doi.org/10.1105/tpc.11.5.937
[5]
Ludewig, U., Neuhauser, B. and Dynowski, M. (2007) Molecular Mechanisms of Ammonium Transport and Accumulation in Plants. FEBS Letters, 581, 2301-2308.
https://doi.org/10.1016/j.febslet.2007.03.034
[6]
D’Apuzzo, E., Rogato, A., Simon-Rosin, U., Alaoui, H.E., Barbulova, A., Betti, M., et al. (2004) Characterization of Three Functional High-Affinity Ammonium Transporters in Lotus Japonicus with Differential Transcriptional Regulation and Spatial Expression. Plant Physiology, 134, 1763-1774.
https://doi.org/10.1104/pp.103.034322
[7]
Wittgenstein, N., Le, C.H., Hawkins, B.J. and Ehlting, J. (2014) Evolutionary Classification of Ammonium, Nitrate, and Peptide Transporters in Land Plants. BMC Evolutionary Biology, 14, 1-17. https://doi.org/10.1186/1471-2148-14-11
[8]
Li, T., Liao, K., Xu, X., Gao, Y., Wang, Z., Zhu, X., et al. (2017) Wheat Ammonium Transporter (AMT) Gene Family: Diversity and Possible Role in Host-Pathogen Interaction with Stem Rust. Frontiers in Plant Science, 8, 1637.
https://doi.org/10.3389/fpls.2017.01637
[9]
Li, C., Tang, Z., Wei, J., Qu, H., Xie, Y. and Xu, G. (2016) The OsAMT1.1 Gene Functions in Ammonium Uptake and Ammonium-Potassium Homeostasis over Low and High Ammonium Concentration Ranges. Journal of Genetics and Genomics, 43, 639-649. https://doi.org/10.1016/j.jgg.2016.11.001
[10]
Zhang, F., Liu, Y., Wang, L., Bai, P., Ruan, L., Zhang, C., et al. (2018) Molecular Cloning and Expression Analysis of Ammonium Transporters in Tea Plants (Camellia sinensis (L.) O. Kuntze) under Different Nitrogen Treatments. Gene, 658, 136-145. https://doi.org/10.1016/j.gene.2018.03.024
[11]
Yuan, L., Loque, D., Kojima, S., Rauch, S., Ishiyama, K., Inoue, E., et al. (2007) The Organization of High-Affinity Ammonium Uptake in Arabidopsis Roots Depends on the Spatial Arrangement and Biochemical Properties of AMT1-Type Transporters. The Plant Cell Online, 19, 2636-2652. https://doi.org/10.1105/tpc.107.052134
[12]
Yuan, L., Graff, L., Loqué, D., Kojima, S., Tsuchiya, Y.N., Takahashi, H., et al. (2009) AtAMT1; 4, a Pollen-Specific High-Affinity Ammonium Transporter of the Plasma Membrane in Arabidopsis. Plant and Cell Physiology, 50, 13-25.
https://doi.org/10.1093/pcp/pcn186
[13]
Loque, D., Yuan, L., Kojima, S., Gojon, A., Wirth, J., Gazzarrini, S., et al. (2006) Additive Contribution of AMT1; 1 and AMT1; 3 to High-Affinity Ammonium Uptake Across the Plasma Membrane of Nitrogen-Deficient Arabidopsis Roots. The Plant Journal, 48, 522-534. https://doi.org/10.1111/j.1365-313X.2006.02887.x
[14]
Giehl, R.F.H., Laginha, A.M., Duan, F., Rentsch, D., Yuan, L. and Wiren, N. (2017) A Critical Role of AMT2; 1 in Root-to-Shoot Translocation of Ammonium in Arabidopsis. Molecular Plant, 10, 1449-1460.
https://doi.org/10.1016/j.molp.2017.10.001
[15]
Kakinuma, M., Nakamoto, C., Kishi, K., Coury, D.A., Amano, H. (2017) Isolation and Functional Characterization of an Ammonium Transporter Gene, PyAMT1, Related to Nitrogen Assimilation in the Marine Macroalga Pyropia yezoensis (Rhodophyta). Marine Environmental Research, 128, 76-87.
https://doi.org/10.1016/j.marenvres.2016.08.007
[16]
Amano, H., Noda, H. (1987) Effect of Nitrogenous Fertilizers on the Recovery of Discoloured Fronds of Porphyra yezoensis. Botanica Marina, 30, 467-473.
https://doi.org/10.1515/botm.1987.30.6.467
[17]
Sakaguchi, K., Ochiai, N., Park, C.S., Kakinuma, M. and Amano, H. (2002) Evaluation of Discoloration in Harvested Laver Porphyra yezoensis and Recovery after Treatment with Ammonium Sulfate Enriched Seawater. Nippon Suisan Gakkaishi, 69, 399-404. https://doi.org/10.2331/suisan.69.399
[18]
Merchant, S.S., Prochnik, S.E., Vallon, O., Harris, E.H., Karpowicz, S.J., Witman, G.B., et al. (2007) The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 318, 245-251.
https://doi.org/10.1126/science.1143609
[19]
Prochnik, S.E., Umen, J., Nedelcu, A.M., Hallmann, A., Miller, S.M., Nishii, I., et al. (2010) Genomic Analysis of Organismal Complexity in the Multicellular Green Alga Volvox carteri. Science, 329, 223-226. https://doi.org/10.1126/science.1188800
[20]
Schonknecht, G., Chen, W.H., Ternes, C.M., Barbier, G.G., Shrestha, R.P., Stanke, M., et al. (2013) Gene Transfer from Bacteria and Archaea Facilitated Evolution of an Extremophilic Eukaryote. Science, 339, 1207-1210.
https://doi.org/10.1126/science.1231707
[21]
Brawley, S.H, Blouin, N.A., Ficko-Blean, E., Wheeler, G.L., Lohr, M., Goodson, H.V., et al. (2017) Insights into the Red Algae and Eukaryotic Evolution from the Genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta). Proceedings of the National Academy of Sciences, 114, 6361-6370.
https://doi.org/10.1073/pnas.1703088114
[22]
Hildebrand, M. (2005) Cloning and Functional Characterization of Ammonium Transporters from the Marine Diatom Cylindrotheca fusiformis (Bacillariophyceae). Journal of Phycology, 41, 105-113.
https://doi.org/10.1111/j.1529-8817.2005.04108.x
[23]
Eriksen, R.L. and Klein, A.S. (2018) Organism-Environment Interactions and Differential Gene Expression Patterns among Open-Coastal and Estuarine Populations of Porphyra umbilicalis Kützing (Rhodophyta) in the Northwest Atlantic. Fisheries and Aquatic Sciences, 21, 28. https://doi.org/10.1186/s41240-018-0103-2
[24]
Takahashi, M. and Mikami, K. (2017) Oxidative Stress Promotes Asexual Reproduction and Apogamy in the Red Seaweed Pyropia yezoensis. Frontiers in Plant Science, 8, 62. https://doi.org/10.3389/fpls.2017.00062
[25]
Adams, E., Mikami, K. and Shin, R. (2017) Selection and Functional Analysis of a Pyropia yezoensis Ammonium Transporter PyAMT1 in Potassium Deficiency. Journal of Applied Phycology, 29, 2617-2626.
https://doi.org/10.1007/s10811-017-1196-1
[26]
Kakinuma, M., Coury, D.A., Nakamoto, C., Sakaguchi, K. and Amano, H. (2008) Molecular Analysis of Physiological Responses to Changes in Nitrogen in a Marine Macroalga, Porphyra yezoensis (Rhodophyta). Cell Biology and Toxicology, 24, 629-639. https://doi.org/10.1007/s10565-007-9053-7
[27]
Kakinuma, M., Suzuki, K., Iwata, S., Coury, D.A., Iwade, S. and Mikami, K. (2015) Isolation and Characterization of a New DUR3-Like Gene, PyDUR3.3, from the Marine Macroalga Pyropia yezoensis (Rhodophyta). Fisheries Science, 82, 171-184.
https://doi.org/10.1007/s12562-015-0947-7
[28]
Takahashi, M., Saga, N. and Mikami, K. (2010) Photosynthesis-Dependent Extracellular Ca2+ Influx Triggers an Asexual Reproductive Cycle in the Marine Red Macroalga Porphyra yezoensis. American Journal of Plant Science, 1, 1-11.
https://doi.org/10.4236/ajps.2010.11001
[29]
Seely, G.R., Duncan, M.J. and Vidaver, W.E. (1972) Preparative and Analytical Extraction of Pigments from Brown Algae with Dimethyl Sulfoxide. Marine Biology, 12, 184-188. https://doi.org/10.1007/BF00350754
[30]
Beer, S. and Eshel, A. (1985) Determining Phycoerythrin and Phycocyanin Concentrations in Aqueous Crude Extracts on Red Algae. Marine and Freshwater Research, 36, 785-792. https://doi.org/10.1071/MF9850785
[31]
Mikami, K., Li, C., Irie, R. and Hama, Y. (2019) A Unique Life Cycle Transition in the Red Seaweed Pyropia yezoensis Depends on Apospory. Communication Biology, 2, 299. https://doi.org/10.1038/s42003-019-0549-5
[32]
Soupene, E., Chu, T., Corbin, R.W., Hunt, D.F. and Kustu, S. (2002) Gas Channels for NH3: Proteins from Hyperthermophiles Complement an Escherichia coli Mutant. Journal of Bacteriology, 184, 3396-3400.
https://doi.org/10.1128/JB.184.12.3396-3400.2002
[33]
Zheng, L., Kostrewa, D., Berneche, S., Winkler, F.K. and Li, X.D. (2004) The Mechanism of Ammonia Transport Based on the Crystal Structure of AmtB of Escherichia coli. Proceedings of the National Academy of Sciences, 101, 17090-17095.
https://doi.org/10.1073/pnas.0406475101
[34]
Marini, A.M., Urrestarazu, A., Beauwens, R. and André, B. (1997) The Rh (Rhesus) Blood Group Polypeptides Are Related to NH4+ Transporters. Trends in Biochemical Sciences, 22, 460-461. https://doi.org/10.1016/S0968-0004(97)01132-8
[35]
Huang, C.H. and Peng, J. (2005) Evolutionary Conservation and Diversification of Rh Family Genes and Proteins. Proceedings of the National Academy of Sciences, 102, 15512-15517. https://doi.org/10.1073/pnas.0507886102
[36]
Nakhoul, N.L. and Hamm, L.L. (2004) Non-Erythroid Rh Glycoproteins: A Putative New Family of Mammalian Ammonium Transporters. Pflugers Archiv—European Journal of Physiology, 447, 807-812. https://doi.org/10.1007/s00424-003-1142-8
[37]
Soupene, E., King, N., Field, E., Liu, P., Niyogi, K.K., Huang, C.H., et al. (2002) Rhesus Expression in a Green Alga Is Regulated by CO2. Proceedings of the National Academy of Sciences, 99, 7769-7773. https://doi.org/10.1073/pnas.112225599
[38]
Michele, R.D., Loque, D., Lalonde, S. and Frommer, W.B. (2012) Ammonium and Urea Transporter Inventory of the Selaginella and Physcomitrella Genomes. Front Plant Science, 3, 62. https://doi.org/10.3389/fpls.2012.00062
[39]
Suzuki, A., Komata, H., Iwashita, S., Seto, S., Ikeya, H., Tabata, M., et al. (2017) Evolution of the RH Gene Family in Vertebrates Revealed by Brown Hagfish (Eptatretus atami) Genome Sequences. Molecular Phylogenetics Evolution, 107, 1-9.
https://doi.org/10.1016/j.ympev.2016.10.004
[40]
Aguera, E., Cabello, P. and Haba, P. (2010) Induction of Leaf Senescence by Low Nitrogen Nutrition in Sunflower (Helianthus annuus) Plants. Physiologia Plantarum, 138, 256-267. https://doi.org/10.1111/j.1399-3054.2009.01336.x
[41]
Meng, S., Peng, J.S., He, Y.N., Zhang, G.B., Yi, H.Y., Fu, Y.L., et al. (2016) Arabidopsis NRT1.5 Mediates the Suppression of Nitrate Starvation-Induced Leaf Senescence by Modulating Foliar Potassium Level. Molecular Plant, 9, 461-470.
https://doi.org/10.1016/j.molp.2015.12.015
[42]
Till, I., Anna, M.Z., Marion, K. and Peter, D. (2006) A Salvage Pathway for Phytol Metabolism in Arabidopsis. The Journal of Biological Chemistry, 281, 2470-2477
https://doi.org/10.1074/jbc.M509222200
[43]
Gomez, F., Carrión, C., Costa, M., Desel, C., Kieselbach, T., Funk, C., et al. (2019) Extra-Plastidial Degradation of Chlorophyll and Photosystem I in Tobacco Leaves Involving “Senescence-Associated Vacuoles”. The Plant Journal, 99, 465-477.
https://doi.org/10.1111/tpj.14337
[44]
Edward, H. and Amasino, R.M. (2001) Nutrients Mobilized from Leaves of Arabidopsis thaliana during Leaf Senescence. Journal of Plant Physiology, 158, 1317-1323.
https://doi.org/10.1078/0176-1617-00608
[45]
Reed, R. (1990) Solute Accumulation and Osmotic Adjustment. Cambridge University, New York.
[46]
Xu, G., Fan, X. and Miller, A.J. (2012) Plant Nitrogen Assimilation and Use Efficiency. Annual Review of Plant Biology, 63, 153-182.
https://doi.org/10.1146/annurev-arplant-042811-105532
[47]
Imamura, S., Terashita, M., Ohnuma, M., Maruyama, S., Minoda, A., Weber, A.P.M., et al. (2010) Nitrate Assimilatory Genes and Their Transcriptional Regulation in a Unicellular Red Alga Cyanidioschyzon merolae: Genetic Evidence for Nitrite Reduction by a Sulfite Reductase-Like Enzyme. Plant and Cell Physiology, 51, 707-717. https://doi.org/10.1093/pcp/pcq043
[48]
Gregersen, P.L., Holm, P.B. and Krupinska, K. (2008) Leaf Senescence and Nutrient Remobilisation in Barley and Wheat. Plant Biology, 10, 37-49.
https://doi.org/10.1111/j.1438-8677.2008.00114.x
[49]
Diaz, C., Lemaitre, T., Christ, A., Azzopardi, M., Kato, Y., Sato, F., et al. (2008) Nitrogen Recycling and Remobilization Are Differentially Controlled by Leaf Senescence and Development Stage in Arabidopsis under Low Nitrogen Nutrition. Plant Physiology, 147, 1437-1449. https://doi.org/10.1104/pp.108.119040
[50]
Peng, J. and Huang, C.H. (2006) Rh Proteins vs Amt Proteins: An Organismal and Phylogenetic Perspective on CO2 and NH3 Gas Channels. Transfusion Clinique et Biologique, 13, 85-94. https://doi.org/10.1016/j.tracli.2006.02.006
[51]
Soupene, E., Inwood, W. and Kustu, S. (2004) Lack of the Rhesus Protein Rh1 Impairs Growth of the Green Alga Chlamydomonas reinhardtii at High CO2. Proceedings of the National Academy of Sciences, 101, 7787-7792.
https://doi.org/10.1073/pnas.0401809101