全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Chi-Square Distribution: New Derivations and Environmental Application

DOI: 10.4236/jamp.2019.78122, PP. 1786-1799

Keywords: Mathematical Induction, Laplace Transform, Gamma Distribution, Chi-Square Test, Gross Alpha-Beta, Drinking Water

Full-Text   Cite this paper   Add to My Lib

Abstract:

We describe two new derivations of the chi-square distribution. The first derivation uses the induction method, which requires only a single integral to calculate. The second derivation uses the Laplace transform and requires minimum assumptions. The new derivations are compared with the established derivations, such as by convolution, moment generating function, and Bayesian inference. The chi-square testing has seen many applications to physics and other fields. We describe a unique version of the chi-square test where both the variance and location are tested, which is then applied to environmental data. The chi-square test is used to make a judgment whether a laboratory method is capable of detection of gross alpha and beta radioactivity in drinking water for regulatory monitoring to protect health of population. A case of a failure of the chi-square test and its amelioration are described. The chi-square test is compared to and supplemented by the t-test.

References

[1]  Hill, T.L. (1986) An Introduction to Statistical Thermodynamics. Dover Publications, New York, 122.
[2]  Satchler, G.R. (1990) Introduction to Nuclear Reactions. Oxford U. P., New York, 248.
https://doi.org/10.1007/978-1-349-20531-8
[3]  Lancaster, H.O. (1969) The Chi-Squared Distribution. J. Wiley & Sons, New York, Chap. 1.
[4]  Gorroochurn, P. (2016) Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times. J. Wiley & Sons, Hoboken, Chap. 3.
https://doi.org/10.1002/9781119127963
[5]  Bienaymé, I.-J. (1852) Sur la Probabilité des Erreurs d’Aprés la Méthode des Moindres Carrés. Liouville’s Journal de Mathématiques Poures et Appliquées, Séries 1, 17, 33-78.
[6]  Abbe, D.E. (1863) Ueber die Gesetzmässigkeit in der Vertheilung der Fehler bei Beobachtungsreihen. Dissertation, Jena.
[7]  Helmert, F.R. (1876) Die Genauigkeit der Formel von Peters zur Berechnung des wahrscheinlichen Beobachtungsfehlers directer Beobachtungen gleicher Genauigkeit. Astronomische Nachrichten, 88, 113-132.
https://doi.org/10.1002/asna.18760880802
[8]  Stuart, A. and Ord, K. (1994) Kendall’s Advanced Theory of Statistics, Vol. 1, Distribution Theory. Arnold Hodder Headline Group, London, Chap. 11.
[9]  Ross, S. (2006) A First Course in Probability. Pearson Prentice Hall, Upper Saddle River, Sec. 6.3.
[10]  Berry, D.A. and Lindgren, B.W. (1996) Statistics: Theory and Methods. Wadsworth Publishing, Belmont, Sec. 5.12, 6.4.
[11]  Gull, S.F. (1988) Bayesian Inductive Inference and Maximum Entropy. In: Erickson, G.J. and Smith, C.R., Eds., Maximum-Entropy and Bayesian Methods in Science and Engineering, Kluwer Academic, Dordrecht, 53-74.
https://doi.org/10.1007/978-94-009-3049-0_4
[12]  Helmert, F.R. (1876) Ueber die Wahrscheinlichkeit der Potenzsummen der Beobachtungsfehler und über einige damit im Zusammenhange stehende Fragen. Zeitschrift für Mathematik und Physik, 21, 192-218.
[13]  Pearson, K. (1900) On the Criterion that a Given System of Deviations from the Probable in the Case of Correlated System of Variables Is Such That It Can Be Reasonably Supposed to Have Arisen from Random Sampling. Philosophical Magazine Series 5, 50, 157-175.
https://doi.org/10.1080/14786440009463897
[14]  Greenwood, P.E. and Nikulin, M.S. (1996) A Guide to Chi-Squared Testing. J. Wiley & Sons, New York, Sec. 3.18.
[15]  Fisher, R.A. (1922) On the Interpretation of χ2 from Contingency Tables and the Calculation of P. Journal of the Royal Statistical Society A, 85, 87-94.
https://doi.org/10.2307/2340521
[16]  Evans, R.D. (1985) The Atomic Nucleus. Krieger Publishing, Malabar, Chap. 27.
[17]  Johnson, N.L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, Vol. 2. J. Wiley & Sons, New York, Chap. 28.
[18]  Eisenbud, M. and Gesell, T. (1997) Environmental Radioactivity from Natural, Industrial, and Military Sources. Academic Press, San Diego, Chap. 6.
https://doi.org/10.1016/B978-012235154-9/50010-4
[19]  Environmental Protection Agency (2000) 40 CFR Parts 9, 141, and 142 National Primary Drinking Water Regulations; Radionuclides; Final Rule. Federal Register, 65, 76708-76752.
[20]  EPA (2017) Procedure for Safe Drinking Water Act Program Detection Limits for Radionuclides. Report EPA 815-B-17-003, Cincinnati.
[21]  Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions, Vol. 1. J. Wiley & Sons, New York, Chap. 12, 17, 18.
[22]  Johnson, N.L., Kemp, A.W. and Kotz, S. (2005) Univariate Discrete Distributions. J. Wiley & Sons, Hoboken, Chap. 1.
https://doi.org/10.1002/0471715816
[23]  Margenau, H. and Murphy, G.M. (1976) The Mathematics of Physics and Chemistry. Krieger Publishing, Huntington, Sec. 8.5.
[24]  Dettman, J.W. (1965) Applied Complex Variables. Dover Publications, New York, Sec. 3.6.
[25]  Oldham, K.B. and Spanier, J. (1974) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications, Mineola, Sec. 3.4.
[26]  Jaynes, E.T. (2004) Probability Theory: The Logic of Science. Cambridge U. P., Cambridge, Chap. 12.
https://doi.org/10.1017/CBO9780511790423
[27]  Student (1908) The Probable Error of a Mean. Biometrika, 6, 1-25.
https://doi.org/10.1093/biomet/6.1.1
[28]  Semkow, T.M. and Parekh, P.P. (2001) Principles of Gross Alpha and Beta Radioactivity Detection in Water. Health Physics, 81, 567-574.
https://doi.org/10.1097/00004032-200111000-00011
[29]  Khan, A.J., Semkow, T.M., Beach, S.E., Haines, D.K., Bradt, C.J., Bari, A., Syed, U.-F., Torres, M., Marrantino, J., Kitto, M.E., Menia, T. and Fielman, E. (2014) Application of Low-Background Gamma-Ray Spectrometry to Monitor Radioactivity in the Environment and Food. Applied Radiation and Isotopes, 90, 251-257.
https://doi.org/10.1016/j.apradiso.2014.04.011

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133