In this paper, we firstly derive the stability conditions of high-order staggered-grid schemes for the three-dimensional (3D) elastic wave equation in heterogeneous media based on the energy method. Moreover, the plane wave analysis yields a sufficient and necessary stability condition by the von Neumann criterion in homogeneous case. Numerical computations for 3D wave simulation with point source excitation are given.
References
[1]
De Basabe, J.D. and Sen, M.K. (2010) Stability of the High-Order Finite Elements for Acoustic or Elastic Wave Propagation with High-Order Time Stepping. Geophysical Journal International, 181, 577-590.
https://doi.org/10.1111/j.1365-246X.2010.04536.x
[2]
Bécache, E., Joly, P. and Tsogka, C. (2002) A New Family of Mixed Finite Elements for the Linear Elastodynamic Problem. SIAM Journal on Numerical Analysis, 39, 2109-2132. https://doi.org/10.1137/S0036142999359189
[3]
Cohen, G.C. (2002) Higher-Order Numerical Methods for Transient Wave Equations. Springer, New York. https://doi.org/10.1007/978-3-662-04823-8
[4]
Zhang, W., Chung, E.T. and Wang, C. (2014) Stability for Imposing Absorbing Boundary Conditions in the Finite Element Simulation of Acoustic Wave Propagation. Journal of Computational Mathematics, 32, 1-20.
https://doi.org/10.4208/jcm.1310-m3942
[5]
Komatitsch, D., Martin, R., Tromp, J., Taylor, M.A. and Wingate, B.A. (2001) Wave Propagation in 2-D Elastic Media Using a Spectral Element Method with Triangles and Quadrangles. Journal of Computational Acoustics, 9, 703-718.
https://doi.org/10.1142/S0218396X01000796
[6]
Chung, E.T. and Engquist, B. (2006) Optimal Discontinuous Galerkin Methods for Wave Propagation. SIAM Journal on Numerical Analysis, 44, 2131-2158.
https://doi.org/10.1137/050641193
[7]
Dumbser, M., Käser, M. and Toto, E.F. (2007) An Arbitrary High-Order Discontinuous Galerkin Method for Elastic Waves on Unstructured Meshes-V. Local Time Stepping and p-Adaptivity. Geophysical Journal International, 171, 695-717.
https://doi.org/10.1111/j.1365-246X.2007.03427.x
[8]
Dumbser, M., Käser, M. and de la Puente, J. (2007) Arbitrary High-Order Finite Volume Schemes for Seismic Wave Propagation on Unstructured Meshes in 2D and 3D. Geophysical Journal International, 171, 665-694.
https://doi.org/10.1111/j.1365-246X.2007.03421.x
[9]
Zhang, W., Zhuang, Y. and Chung, E.T. (2007) A New Spectral Finite Volume Method for Elastic Wave Modelling on Unstructured Meshes. Geophysical Journal International, 206, 292-307. https://doi.org/10.1093/gji/ggw148
[10]
Alford, R.M., Kelly, K.R. and Boore, D.M. (1974) Accuracy of Finite-Difference Modeling of the Acoustic Wave Equation. Geophysics, 39, 834-842.
https://doi.org/10.1190/1.1440470
[11]
Bayliss, A., Jordan, K.E., Lemesurier, B. and Turkel, E. (1986) A Fourth Accurate Finite Difference Scheme for the Computation of Elastic Waves. Bulletin of the Seismological Society of America, 76, 1115-1132.
[12]
Virieux, J. (1986) P-SV Wave Propagation in Heterogeneous Media: Velocity Stress Formulation Finite Difference Method. Geophysics, 51, 889-901.
https://doi.org/10.1190/1.1441605
[13]
Zingg, D.W., Lomax, H. and Jurgens, H. (1996) High-Accuracy Finite-Difference Schemes for Linear Wave Propagation. SIAM Journal on Scientific Computing, 17, 328-346. https://doi.org/10.1137/S1064827599350320
[14]
Cohen, G. and Joly, P. (1996) Construction and Analysis of Fourth-Order Finite Difference Schemes for the Acoustic Wave Equation in Nonhomogeneous Media. SIAM Journal on Numerical Analysis, 33, 1266-1302.
https://doi.org/10.1137/S0036142993246445
[15]
Sei, A. (1995) A Family of Numerical Schemes for the Computation of Elastic Waves. SIAM Journal on Scientific Computing, 16, 898-916.
https://doi.org/10.1137/0916052
[16]
Nilsson, S., Petersson, N.A., Sjögreen, B. and Kreiss, H.-O. (2007) Stable Difference Approximations for the Elastic Wave Equation in Second Order Formulation. SIAM Journal on Numerical Analysis, 45, 1902-1936.
https://doi.org/10.1137/060663520
[17]
Zhang, W. (2019) A New Family of Fourth-Order Locally One-Dimensional Schemes for the 3D Elastic Wave Equation. Journal of Computational and Applied Mathematics, 348, 246-260. https://doi.org/10.1016/j.cam.2018.08.056
[18]
Fornberg, B. (1988) Generation of Finite Difference Formulas on Arbitrarily Spaced Grids. Mathematics of Computation, 51, 699-706.
https://doi.org/10.1090/S0025-5718-1988-0935077-0
[19]
Fornberg, B. (1990) High-Order Finite Differences and the Pseudospectral Method on Staggered Grids. SIAM Journal on Numerical Analysis, 27, 904-918.
https://doi.org/10.1137/0727052
[20]
Fornberg, B. and Ghrist, M. (1999) Spatial Finite Difference Approximations for Wave-Type Equations. SIAM Journal on Numerical Analysis, 37, 105-130.
https://doi.org/10.1137/S0036142998335881