全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Thermochemical Characterization of Casamance Biomass Residues for Production of Combustibles Briquettes

DOI: 10.4236/ojpc.2019.93009, PP. 170-181

Keywords: Co-Products, Carbonization, Biochar, NDS, ADS and TGA

Full-Text   Cite this paper   Add to My Lib

Abstract:

The development of alternatives energies illustrates the common interest of all countries in reducing greenhouse gas emissions and combating climate change. Thermochemical treatment of municipal solid waste, agricultural and forestry wastes is a major challenge for this XXIst century to replace petroleum fuels. Thermogravimetric analysis (TGA) makes it possible to elucidate the thermal behavior of Casamance (Senegal) biomass residues, mass losses and decomposition rate, under inert (N2) atmosphere and oxidizing (O2) atmosphere. Carbonization and briquetting techniques of these various residues encountered in this part of Senegal country, by densification in order to produce fuel briquettes (call biochars) will be used to improve stoves for cooking. Samples used in this study are peanuts shells (PNS), cashew nut shells (CNS), palm nut shells (PLS) and millet stems (MS). Elemental and approximate analyses make it possible to determine the CHNSO* composition, volatile matter, fixed carbon and ashes content of the samples used. Higher heating values (HHV) of the former residues are ranging from 28.60 MJ·kg-1, 26.51 MJ·kg-1, 29.69 MJ·kg-1 and 24.93 MJ·kg-

References

[1]  Yang, X., Choi, H.S., Park, C. and Kim, S.W. (2015) Current States and Prospects of Organic Waste Utilization for Biorefineries. Renewable and Sustainable Energy Reviews, 49, 335-349.
https://doi.org/10.1016/j.rser.2015.04.114
[2]  Liu, Z., Jiang, Z., Fei, B. and Liu, X. (2013) Thermal Decomposition Characteristics of Chinese Fir. BioResources, 8, 5014-5024.
https://doi.org/10.15376/biores.8.4.5014-5024
[3]  Sharma, A., Pareek, V. and Zhang, D. (2015) Biomass Pyrolysis—A Review of Modelling, Process Parameters and Catalytic Studies. Renewable and Sustainable Energy Reviews, 50, 1081-1096.
https://doi.org/10.1016/j.rser.2015.04.193
[4]  PAM (2014) Analyse Globale de la Vulnérabilité, de la Sécurité Alimentaire et de la Nutrition (AGVSAN) Sénégal. 1-96.
[5]  Burhenne, L., Messmer, J., Aicher, T. and Laborie, M.P. (2013) The Effect of the Biomass Components Lignin, Cellulose and Hemicellulose on TGA and Fixed Bed Pyrolysis. Journal of Analytical and Applied Pyrolysis, 101, 177-184.
https://doi.org/10.1016/j.jaap.2013.01.012
[6]  Seo, D.K., Park, S.S., Hwang, J. and Yu, T.U. (2010) Study of the Pyrolysis of Biomass Using Thermo-Gravimetric Analysis (TGA) and Concentration Measurements of the Evolved Species. Journal of Analytical and Applied Pyrolysis, 89, 66-73.
https://doi.org/10.1016/j.jaap.2010.05.008
[7]  Martens, D.A. and Loeffelmann, K.L. (2002) Improved Accounting of Carbohydrate Carbon from Plants and Soils. Soil Biology and Biochemistry, 34, 1393-1399.
https://doi.org/10.1016/S0038-0717(02)00082-2
[8]  Demirbas, A. (2005) Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues. Progress in Energy and Combustion Science, 31, 171-192.
https://doi.org/10.1016/j.pecs.2005.02.002
[9]  Qin, K. and Thunman, H. (2015) Diversity of Chemical Composition and Combustion Reactivity of Various Biomass Fuels. Fuel, 147, 161-169.
https://doi.org/10.1016/j.fuel.2015.01.047
[10]  Liu, Z. and Han, G. (2015) Production of Solid Fuel Biochar from Waste Biomass by Low Temperature Pyrolysis. Fuel, 158, 159-165.
https://doi.org/10.1016/j.fuel.2015.05.032
[11]  Binici, H. and Aksogan, O. (2017) Insulation Material Production from Onion Skin and Peanut Shell Fibres, Fly Ash, Pumice, Perlite, Barite, Cement and Gypsum. Materials Today Communications, 10, 14-24.
https://doi.org/10.1016/j.mtcomm.2016.09.004
[12]  Yang, H., Yan, R., Chen, H., Lee, D.H. and Zheng, C. (2007) Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, 86, 1781-1788.
https://doi.org/10.1016/j.fuel.2006.12.013
[13]  Rousset, P., Turner, I., Donnot, A. and Perré, P. (2006) Choix d’un modèle de pyrolyse ménagée du bois à l’échelle de la microparticule en vue de la modélisation macroscopique. Annals of Forest Science, 63, 213-229.
https://doi.org/10.1051/forest:2005113
[14]  Klass, D. (1998) Thermal Conversion: Pyrolysis and Liquefaction. In: Klass, D.L., Ed., Biomass for Renewable Energy, Fuels, and Chemicals, Elsevier, Amsterdam, 225-269.
https://doi.org/10.1016/B978-012410950-6/50011-8
[15]  Shafizadeh, F. (1982) Introduction to Pyrolysis of Biomass. Journal of Analytical and Applied Pyrolysis, 3, 283-305.
https://doi.org/10.1016/0165-2370(82)80017-X
[16]  Tsamba, A.J., Yang, W. and Blasiak, W. (2006) Pyrolysis Characteristics and Global Kinetics of Coconut and Cashew Nut Shells. Fuel Processing Technology, 87, 523-530.
https://doi.org/10.1016/j.fuproc.2005.12.002
[17]  Jeguirim, M., Bikai, J., Elmay, Y., Limousy, L. and Njeugna, E. (2014) Thermal Characterization and Pyrolysis Kinetics of Tropical Biomass Feedstocks for Energy Recovery. Energy for Sustainable Development, 23, 188-193.
https://doi.org/10.1016/j.esd.2014.09.009
[18]  Zhu, G., Zhu, X., Xiao, Z., Zhou, R., Zhu, Y. and Wan, X. (2014) Kinetics of Peanut Shell Pyrolysis and Hydrolysis in Subcritical Water. Journal of Material Cycles and Waste Management, 16, 546-556.
https://doi.org/10.1007/s10163-013-0209-7
[19]  Yaman, S. (2004) Pyrolysis of Biomass to Produce Fuels and Chemical Feedstocks. Energy Conversion and Management, 45, 651-671.
https://doi.org/10.1016/S0196-8904(03)00177-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133