In restricted channel, the hydrodynamic performance of propeller is affected by the wall. In the present work, two cylindrical channels with different diameters being 1.8D and 5.0D are adopted to study the influence of wall on the hydrodynamic performance and wake field of the propeller model DTMB4119. The numerical simulations are carried out by the single-phase solver pimpleDyMFoam in open source platform OpenFOAM. The Reynolds Averaged Navier-Stokes equations (RANS) are adopted to solve the flow field. The arbitrary mesh interface (AMI) method is used to simulate the rotation of propeller. The designed advance ratio, J = 0.833, is applied in all the computations. For the 5.0 D case, the predicted results of open water performance are in good agreement with experiment data. In restricted channel, the predicted results of thrust and torque coefficients are larger than the open water case. The pressure on the wall of restricted channel downstream increases and approaches the results in open water gradually. Due to the flux conservation, higher negative induced velocity is investigated in the flow field of the propeller in restricted channel.
References
[1]
Huang, P.T. and Chu, Y.Q. (1984) The Wall Effect and Correction of Cavitation Tunnel on Propeller Model Tests. Shipbuilding of China, 3, 3-12.
[2]
Qian, X.N. and Chen, L.X. (1983) The Wall Effect of Cavitation Tunnel on Propeller Model Test. Shipbuilding of China, 3, 16-24.
[3]
Lartiga, C. (2012) Development of a Rig and Testing Procedures for the Experimental Investigation Of Horizontal Axis Kinetic Turbines. Master Thesis, University of Victoria, Victoria.
[4]
Huang, G.Y., Li, L.W., Zhao, Y. and Ye, H.K. (2011) The Wall Effect of Simple Propeller Water Tank by CFD. Ship Science and Technology, 33, 19-23.
[5]
Sorensen, J.N., Shen, W.Z. and Mikkelsen, R. (2006) Wall Correction Model for Wind Tunnels with Open Test Section. AIAA Journal, 44, 1890-1894.
https://doi.org/10.2514/1.15656
[6]
Chen, X., Lu, C.J., Li, J. and Pan, Z.C. (2008) The Wall Effect on Ventilated Cavitating Flows in Closed Cavitation Tunnels. Journal of Hydrodynamics, 20, 561-566.
https://doi.org/10.1016/S1001-6058(08)60095-5
[7]
Watanabe, S. and Brennen, C.E. (2003) Dynamics of a Cavitating Propeller in a Water Tunnel. Journal of Fluids Engineering, 125, 283-292.
https://doi.org/10.1115/1.1524588
[8]
Yongle, D., Baowei, S. and Peng, W. (2015) Numerical Investigation of Tip Clearance Effects on the Performance of Ducted Propeller. International Journal of Naval Architecture and Ocean Engineering, 7, 795-804.
https://doi.org/10.1515/ijnaoe-2015-0056
[9]
Yan, Z.G. (2012) Based on CFD Method to Research the Hydrodynamic Performance of Transverse Thrusters. Master Thesis, Jiangsu University of Science and Technology, Zhenjiang.
[10]
Yu, L., Greve, M., Druckenbrod, M. and Abdel-Maksoud, M. (2013) Numerical Analysis of Ducted Propeller Performance under Open Water Test Condition. Journal of Marine Science and Technology, 18, 381-394.
https://doi.org/10.1007/s00773-013-0215-4
[11]
Lv, X.J., Zhou, Q.D. and Pan, Y.C. (2017) Wall Effect on Ducted Propellers in Water Tunnel Test. Journal of Naval University of Engineering, 29, 62-66.
[12]
He, D.Y. and Wan, D.C. (2017) Numerical Investigation of Open Water Performance of CRPs under Different Blade Number Ratio. Proceedings of 14th National Conference of Hydrodynamics, Changchun, 8-13 August 2017, 1005-1012.
[13]
Zheng, J., He, D.Y. and Wan, D.C. (2018) Numerical Analysis of Different Blade Number Ratios Influence on Open Water Performance of CRPs Based on CFD Method. Chinese Journal of Hydrodynamics, 33, 169-175.
[14]
He, D.Y. and Wan, D.C. (2018) Investigation of Hydrodynamic Performance of Contro-Rotating Propellers with Different Design Parameters. The Ocean Engineering, 36, 19-29.
[15]
Xu, L.R. and Wan, D.C. (2018) Numerical Research on Hydrodynamic Characteristics of Propeller Boss Cap Fins. Chinese Journal of Ship Research, 13, 15-21.
[16]
Xu, L.R. and Wan, D.C. (2018) CFD Investigation on the Energy-Saving Mechanism of Propeller Boss Cap Fins. Chinese Journal of Hydrodynamics, 33, 428-434.
[17]
Menter, F.R., Kuntz, M. and Langtry, R. (2003) Ten Years of Industrial Experience with the SST Turbulence Model. Turbulence, Heat and Mass Transfer, 4, 625-632.
[18]
Xu, L.R. and Wan, D.C. (2018) Numerical Investigation of Scale Effect for Propeller Boss Cap Fins. 28th International Ocean and Polar Engineering Conference, Sapporo, 10-15 June 2018, 805-811.
[19]
Jessup, S.D. (1989) An Experimental Investigation of Viscous Aspects of Propeller. Ph.D. Thesis, Catholic University of America, Washington.